
The Provision of Non-Strictness, Higher Kinded Types

and Higher Ranked Types on an Object Oriented

Virtual Machine

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

in the

University of Canterbury

by

Oliver Hunt

Examining Committee

Dr. Wolfgang Kreutzer Supervisor

Dr. Jeremy Gibbons Examiner

Prof. K John Gough Examiner

University of Canterbury

2006

To Mum and Dad

Abstract

We discuss the development of a number of algorithms and techniques to al-

low object oriented virtual machines to support many of the features needed

by functional and other higher level languages. These features include non-

strict evaluation, partial function application, higher ranked and higher kinded

types.

To test the mechanisms that we have developed we have also produced a

compiler to allow the functional language Haskell to be compiled to a native

executable for the Common Language Runtime. This has allowed us to

demonstrate that the techniques we have developed are practically viable.

Table of Contents

List of Figures v

Chapter 1: Introduction 1

1.1 Topic . 1

1.2 Problems . 2

1.2.1 Non-Strict Evaluation 2

1.2.2 Higher Kinded Types 3

1.2.3 Higher Ranked Types 3

1.3 Evaluation . 4

1.4 Overview . 4

Chapter 2: Background and Related Work 7

2.1 Functional Programming Languages 7

2.2 Virtual Machines . 9

2.3 Targeting an OOVM . 12

2.4 Existing Functional Language to Typed Virtual Machine Com-

pilers . 13

2.5 Interfacing Haskell to an Object Oriented Virtual Machine . . 15

Chapter 3: Functions and Non-Strictness 17

3.1 Lambda Expressions . 17

3.2 Partial Application . 20

3.2.1 Using The Push-Enter Model 21

3.2.2 Using The Eval-Apply Model 23

3.2.3 Transforming Partial Applications Into Complete Ap-

plications . 23

3.2.4 Discussion . 26

3.3 Non-Strictness . 26

Chapter 4: Types 29

4.1 Functional Language Types 29

4.1.1 Algebraic types and Records 29

4.1.2 Parametric Polymorphism 31

4.1.3 Type Classes and Instances 32

4.1.4 Higher Ordered, Ranked, and Kinded Types 33

4.2 Imperative Object-Oriented Types 34

4.2.1 Classes . 34

4.2.2 Generic Classes and Methods 37

4.2.3 Primitive and Value Types 38

Chapter 5: Converting Functional Types to an Imperative

Object Model 39

5.1 Algebraic Types . 39

5.2 Type Classes and Instances 42

5.3 Higher Order Types . 45

Chapter 6: Providing Non-Strictness 47

6.1 Support for Non-Strictness on Conventional Architectures . . 48

6.2 Non-Strictness on OOVMs: Current Developments 49

6.2.1 JIT Objects . 50

6.3 Algebraic types vs. JIT Objects 51

6.4 Non-Strictness for Functional Languages 53

6.4.1 Non Strictness for Boxed Primitives 54

ii

6.4.2 Non-Strict Function Values 55

6.5 Performing Non-Strict Evaluation 57

Chapter 7: Higher Kinded Types 61

7.1 Background . 61

7.1.1 Higher-kinded type variables in functions 61

7.1.2 Higher-kinded type variables in type classes 62

7.2 Solution . 64

7.2.1 Type Erasure . 64

7.2.2 Explicit Instantiation Types 65

7.3 Problems . 68

Chapter 8: Higher Ranked Types 71

8.1 What are higher ranked types? 71

8.2 Solution . 72

8.2.1 Basic solution . 72

8.2.2 Supporting Multiple Libraries 74

8.3 Problems . 80

Chapter 9: Experimental Compiler 83

9.1 Design Decisions . 83

9.2 Type Generation . 84

9.3 Architecture . 85

9.3.1 Stage 1: Initial Processing 85

9.3.2 Stage 2: Converting to a Typed Structure 86

9.3.3 Stage 3: Transformations 87

9.3.4 Stage 4: Final Compilation 91

9.4 Performance . 93

9.5 Summary . 94

iii

Chapter 10: Future Work and Conclusion 97

10.1 Future Work . 97

10.1.1 Performance Improvements 97

10.1.2 Virtual Machine Level Support 98

10.1.3 Integration of External Functions into a Functional

Language . 98

10.2 Conclusions . 99

References 101

iv

List of Figures

3.1 Algorithm to perform a function call using the push-enter model. 22

4.1 Definition of instance for Eq (List a) 33

5.1 Classes defined for the List type. 41

5.2 Classes defined for the List type with tags. 42

5.3 Reference summary of Eq, Eq Bool and Eq (List a) 43

5.4 Example of type class to algebraic type conversion 43

5.5 The Eq type class, and the instance for Eg (List a). 44

5.6 Illustration of class for higher order type 45

5.7 Generic Function class for representing higher order types. . . 46

6.1 The JIT Object structure for the C# List type. 51

6.2 List structure with non-strict support – first attempt. 52

6.3 Final structures for non-strict algebraic types 55

6.4 Boxed type for non-strict evaluation of primitive types 56

6.5 Classes for non-strict evaluation of higher order types 57

6.6 IThunkable Interface for type parameters 59

7.1 Conversion algorithm for higher kinded types to an OOVM . . 66

7.2 Example application of higher kinded type conversion algorithm 69

8.1 Example of the problems of higher ranked types across multi-

ple modules . 75

8.2 Demonstration of how to share higher ranked types across mul-

tiple modules . 76

v

vi

Acknowledgments

I would like to thank Dr. Nigel Perry for his constant support and advice,

even in the face of adversity. Without his support this thesis would never

have been possible. I also thank my fellow occupants of MSCS344: Ryan,

Taher, Michael, and Jason, they have made the last 16 months much more

enjoyable and interesting that they might otherwise have been.

Finally many thanks Alex, Amy, Amanda, Dave, Graham, Jay, Lee, Mukun-

dan, The Other Oliver, Richard, Wal and others far to numerous to mention

for willingly discussing the many and varied topics of conversation (or rants)

I have come up with over the past 16 months.

vii

Chapter I

Introduction

1.1 Topic

Since the introduction of the Java Virtual Machine (JVM) the use of virtual

machines in mainstream programming has been increasing. The execution

of programs inside a virtual machine (VM) offers numerous advantages over

native execution, such as improvements to code reliability, maintainability,

interoperability, and security. However these VMs are often tailored to a

specific language, due in part to a bias by the original developer. In the

case of the JVM, that language is its namesake, ‘Java’. More recently, how-

ever, Microsoft has produced the .NET Common Language Runtime, which

has been standardised to the ECMA/ISO Common Language Infrastructure

(CLI). Unlike other VMs, the CLI is designed as a general purpose VM, in-

tended to efficiently execute code from a number of different programming

languages.

One of the CLI’s design goals was to support many different programming

languages, and a number of compilers for languages have since been produced

that target the CLI directly (including C#, COBOL, Delphi, Fortran, and

numerous others). These languages however share many common features,

including similar type systems and execution models, thus allowing the CLI

to use a similar type system and execution model to those languages. The

final result of this simplification is a virtual machine capable of being targeted

relatively easily by any object oriented imperative programming language.

However there are programming languages that are not imperative or object

oriented, and such languages may require a number of features not present

1

on an object oriented virtual machine. While a number of these features

can be mapped easily to an object oriented virtual machine there are a some

for which the necessary transformations are non-trivial. This means that a

number of languages; including Haskell, LISP, and some dynamic languages;

are not easily able to target OOVMs. In this thesis I will describe a number

of algorithms and techniques that allow a number of these features, most

notably non-strict evaluation and higher order, higher kinded, and higher

ranked types, to be provided on an otherwise conventional OOVM. As all

of these features are used in functional languages, it is functional languages

that our thesis will focus on.

1.2 Problems

While there are a number of difficulties in providing support for functional

languages in object oriented systems many of these, particularly represen-

tation of algebraic types, have been discussed previously, or are trivial ex-

tensions to prior work. In addition to the problems encountered when at-

tempting to converted functional languages to OO environments, the typed

memory models of OOVMs also place other restrictions how certain features

may be supported.

While previous projects have aimed to provide support for full functional

languages on OOVMs , these have either discarded most of the static type

information from the original language, or provided only partial feature sup-

port. In this thesis we describe techniques and algorithms that provide full

support non-strict evaluation, higher kinded types, and higher ranked types,

while retaining almost all static type information.

1.2.1 Non-Strict Evaluation

Non-strict evaluation is the act of delaying evaluation of an expression un-

til the computed value is actually needed. It has existed in many forms,

from the pass-by-name semantics of Algol 60 through to non-strict func-

tional languages and manual proxy objects in modern OO languages. Full

2

non-strictness in a language has many advantages as it relieves the program-

mer from the task of controlling when expressions are evaluated as they will

be evaluated only when (or if) they are needed.

Due to the typed memory model of an OOVM the traditional methods used

to provide non-strictness can no longer be used, however this thesis describes

a technique that provides non-strictness over all algebraic types. Unlike pre-

vious techniques this approach minimises the visibility of any delayed eval-

uation, hopefully improving interoperability with other languages operating

on the VM.

1.2.2 Higher Kinded Types

Higher kinded types are an extension to the basic concept of generic types

that allow type parameters to be instantiated with functions over types (or

open types) rather than just types (or closed types). The functional language

Haskell supports a limited form of higher-kinded types, where type functions

are limited to being first-order (ie. functions over closed types), and we have

only addressed this level of support. We have developed an algorithm to

map types with higher-kinded parameters onto OOVM ones with simple type

parameters. The algorithm provides a high degree of static type-checking but

some dynamic checks are still required to satisfy the OOVM – all such checks

will succeed if the original higher-kinded types are type correct.

1.2.3 Higher Ranked Types

Higher-ranked types are those in which the scope of quantification of the

type variables can be made local to just part of a type expression. This is

in contrast to the usual approach to quantification employed in functional

languages where the scope is always the whole type expression. In opera-

tional terms this means that a polymorphic function may be passed as an

argument without being specialised to some particular type, and then used

with different specialisations within the body.

In OOVM terms support for higher-ranked types requires the ability to pass

open types as parameters, something which is not supported by current

3

OOVMs. We have developed an algorithm whereby wrapping a type within

an interface allows it to be passed as an open type. There are a number of

subtleties that must be handled for this to be successful and these are all

dealt with.

1.3 Evaluation

To evaluate the algorithms we have chosen build an implementation of Haskell

(with higher ranked types provided as an extension, as in the Glasgow Haskell

Compiler), which provides us with many advantages over other similar lan-

guages. It is used in both academic and commercial environments, it has

a largely standardised base [44], and most importantly for our purposes, it

supports all of the above features, thus allowing us to use a consistent envi-

ronment when discussing each feature. While many other similar languages

exist, they are either no longer widely used (eg. Hope [3], Miranda [64]), pri-

marily academic (eg. Mondrian [40]), or do not support all of the features we

wish to develop (eg. Erlang [1], Nemerle [36], ML [16]). The use of Haskell

for evaluating our techniques and algorithms does not limit them and they

are applicable to any language that uses these features.

1.4 Overview

This thesis starts with a discussion of the history and development of both

virtual machines and functional programming languages, as well as previous

attempts to combine the two. Chapter 3 follows with an introduction to

some of the more complex features of functions in functional languages, such

as partial applications and lambda functions, and discusses how they are

provided on OOVMs.

Chapter 4 introduces the type systems of the CLI and that of functional

languages. This leads to a discussion of the mechanisms and transforma-

tions required to support the basic features of a functional type system on a

standard OOVM (in Chapter 5).

4

Non-strict evaluation is introduced in Chapter 6, in which we describe a num-

ber of techniques to extend the techniques of Chapter 5 to support non-strict

evaluation. We then discuss the algorithms required to support higher kinded

types on an OOVM in Chapter 7, and higher ranked types in Chapter 8.

Chapter 9 describes the implementation of a compiler that uses the tech-

niques we have developed to support the full Haskell 98 language [44] on the

CLI.

Finally, Chapter 10 concludes this thesis with a discussion of the possible

extensions to our work and summarises what we have accomplished and the

techniques that we have developed.

5

6

Chapter II

Background and Related Work

The problem of supporting different programming models on VMs designed

for a different model has been addressed previously [10, 37, 38, 61]. One of

the more recent approaches is the ‘Iron Python’ project in which an imple-

mentation of the Python programming language was created for the .NET

CLI [23]. There have also been numerous projects to develop compilers that

allow functional languages (either pre-existing, or developed for the purpose)

such as Mondrian, F#, Lambada, and others to be compiled to an OOVM. In

this chapter we will discuss the history of functional languages (Section 2.1),

VMs (Section 2.2), and the attempts to bring them together (Section 2.4).

Finally Section 2.5 will discuss the special requirements for targetting an

object oriented VM.

2.1 Functional Programming Languages

Unlike imperative programming languages, in which a function is treated as

a series of instructions, functional programming languages treat a function

as a mathematical expression transforming that function’s input. An im-

mediate side effect of this interpretation of functions is the loss of variables

and assignment operations, meaning that a purely functional program can

not have any side effects. This is widely regarded as being one of the great

strengths of functional languages as it greatly eases the process of proving

program correctness [22].

The Information Processing Language is widely regarded as the one of the

first true functional programming languages, however one of the first ‘func-

tional’ languages to be widely used was the LISP programming language [19,

31]. While LISP was not a purely functional language (as functions could

have side effects) it introduced many of the features found in more recent

7

functional languages, including features such as lambda expressions, and list

processing. In the 1970’s the language ML was developed, however it too

allowed the use of imperative coding and therefore side effects. The KRC

language [63] was the first purely functional programming language; this in-

troduced the concept of pattern matching, allowing function definitions to

be based on a case analysis of the argument values.

Another feature many functional languages support is non-strict evaluation

(initially described by Friedman and Wise[12]). Under non-strict evaluation

an expression is not evaluated when first encountered but rather later when,

and if, its value is needed. For example when a function call is encountered

the argument expressions are not immediately evaluated and evaluation of

the functions definition proceeds; only when, and if, the definition requires

the value of an argument is the argument expression evaluated. Among other

things this allows for the construction of ‘infinite’ lists and other ‘infinite’

data structures[21]. Non-strict evaluation is not required for a functional

language, and for this reason there are some languages that provide it, and

some that do not. If a language provides non-strict evaluation it is considered

to be non-strict, and conversely a language without support for non-strictness

is referred to as strict. Many modern functional languages use the Damas-

Milner type system as the basis for their type system as it allows complete

inference of all type information [50].

The Miranda language [64] later introduced currying, a mechanism first de-

scribed by Schonfinkel [42] and later extended by Curry [6]. In essence cur-

rying is the process of representing a function of n arguments as a function

that takes 1 argument, and returns a function taking the remainder of the

arguments. Here we provide an example of currying a function:

add a b = a + b

inc = add 1

In this example we have defined a function add, that takes two arguments,

a and b, and returns the result of adding them. We then define inc to

be a partial application of add, resulting in a function that only takes one

argument, and returns the result of incrementing that argument by 1. So

calling add 1 2 or inc 2 will both produce a result of 3.

8

ML later branched into a number of other languages, including SML, Caml,

and OCaml. Late in the 1980’s the Haskell language was developed. It

brought features from many other functional languages including LISP and

ML together into a single functional language. Haskell has since become the

most widely used pure functional language, both in industry and academia.

Haskell is now one of the primary languages used for research on functional

languages, as it presents a well defined language and a number of implemen-

tations that can be used as the basis for research. The most recent standard

definition is Haskell 98[44], although different implementations provide ex-

tensions to the standard.

Functional languages are strongly typed; this means that any value must have

a fixed type, be it a tuple, a list, an object, or some other primitive type (such

as integers, and floating point values) etc. This does not necessarily mean

that the types of function arguments must be declared, as in many cases

it is possible for a compiler to infer what the types must be in order to be

correct. Most functional languages are also strongly polymorphically typed,

which allows the definition of generic functions, such as this:

reverse [] = []

reverse (x : xs) = (reverse xs) ++ [x]

The reverse function will be able to operate on a list of any type, meaning

it only needs to be implemented once regardless of how many different types

of list elements it is expected to work with.

2.2 Virtual Machines

The most general definition of a virtual machine is that it is a system that

provides an abstraction from the native hardware of a computer. The most

frequently encountered example of a VM with this definition is a computer’s

operating system (OS). The OS provides an abstraction from the underly-

ing hardware of a computer to increase the portability of programs that it

executes, as these programs are no longer reliant on specific hardware. This

abstraction allows larger and more complicated programs to be written, and

9

increases the reliability of these programs, as it allows the developers them-

selves to work at a higher level of abstraction. This abstraction means that

the underlying nature of the hardware from which a computer is built be-

comes less and less relevant. An early example of this is the IBM Virtual

Machine OS, which provided one of the first multiuser environments on a

computer. It did this by providing a complete abstraction of the computer,

which was called a “Virtual Machine”. By allowing multiple VMs to run on

a single system they were able support multiple simultaneous users, where

individual programs did not need to be aware of the multi-user nature of the

system.

The next level of virtual machines are the runtime systems of programming

languages. For example the FORTRAN runtime system provides a uniform

I/O system for programs regardless of the operating system upon which they

are executing.

Building on this is the virtual machine which abstracts away further from the

execution model of the hardware/operating system to provide a model better

suited to a particular programming language or languages. For example, the

LISP language which was first implemented using a VM in the form of an

interpreter [31]. By using a VM it becomes easier to write a compiler, as the

compiler can target the VM, which is likely to provide an abstraction from

the native machine. For example both the JVM and the CLI provide low

level instructions for loading and storage of method arguments, whereas a

compiler for a native machine would need to track the arguments manually,

including where they are on the stack, or in which register the arguments

are.

Another branch of virtual machines are those that emulate one computer

hardware model on another, enabling all the software from operating system

upwards that is built for one set of hardware to be executed on a completely

different set. A current example is Virtual PC which runs on IBM’s PowerPC

system and emulates Intel’s Pentium hardware. A different approach to the

same idea has lead to the development of systems such as the Parallel Virtual

Machine (PVM)[58]. The PVM system provides an abstraction from the

actual details of the systems running the virtual machine and allows a group

10

of computers to appear as a single parallel VM on which software can be

executed.

The use of VMs brings many benefits to the language implementor as well

as the programmer. The key benefits relate to what the VM is able to

do automatically when executing a program. A common feature of modern

VMs is the addition of automatic memory management or garbage collection.

While a VM is not necessary to provide garbage collection [44], VMs can

enforce restrictions on the memory model that make supporting garbage

collection easier.

Many modern VMs are more strongly typed than hardware machines and

restrict what operations can be performed using memory references. Such

restrictions simplify the task of garbage collection as pointers are more readily

verifiable [2, 7]. VMs can also improve the security of software by blocking

any attempt to access invalid locations in memory; thus avoiding a number

of major problems in software development.

Furthermore since the VM enforces type safety it can detect an incorrect

argument, and prevent the function from being executed, once again making

it easier to find or prevent errors from occurring [60]. This validity checking

can be extended to runtime validity checks of the code itself, decreasing the

chance of a corrupt executable causing data loss or corruption [52].

In the JVM and CLI the protection aspect of VMs has been further extended,

allowing fine grained permissions in the VM to limit access to features that

a particular program should not access [14, 57]. As these restrictions are

implemented at the VM level, a program should not be able to circumvent

the restrictions, even in the case of program errors.

Finally VMs can be used to ease the development of cross platform solutions.

This is possible as instead of having to port an application to each target

platform, only the VM needs to be ported. For a single application this

is not significantly important, but when a large number of applications are

involved the savings can be dramatic. For this task the JVM and the CLI

are the most popular VMs, as Sun Microsystems has provided JVMs for

many platforms [17], and the CLI is implemented on numerous platforms by

Microsoft Corporation (through the cross-platform ‘Rotor’ implementation of

11

the CLI)[57] and by the Mono project [35]. In order to improve the execution

speed of these VMs they tend to be optimised around the concepts used by

the principal languages they will be executing. For the JVM that language

is Java, the CLI was designed to be a platform that could be targeted by

many different object oriented imperative languages [15].

2.3 Targeting an OOVM

Despite the many advantages of virtual machines, there is a potentially sig-

nificant downside. By definition virtual machines are providing some ab-

straction of the actual underlying system and in doing so may constrain the

range of operations that can be performed. OOVMs enforce a particular

object-oriented model and in doing so constrain or restrict the generality of

the system in order to provide the guarantees, such as type safety, required

for that model.

The design of any high-level VM is a balance between maintaining generality

while enforcing the required semantics and, at least in current designs, the

former loses somewhat to the latter. This loss of generality means that

programming languages that can operate directly on hardware, may not be

able to effectively target a given high-level VM.

The challenge is to develop algorithms to increase the range of languages

that can be supported on a given OOVM design; or to determine what, if

any, changes might be made to its design to increase its applicability without

undue negative impacts on the languages currently supported.

In this thesis we restrict ourselves to looking at a small number of features

that current OOVMs where not designed to directly support: Damas-Milner

style polymorphism, higher rank types, higher kinded types, and non-strict

evaluation. Other features, such as multiple inheritance (as in C++, and

Eiffel), are not addressed and many have been dealt with elsewhere (for

example multiple inheritance by Eiffel for .NET[25]).

Attempts to provide support for features that the OOVM itself does not per-

form may be non-trivial, and may have significant computational overhead.

12

For this reason there are a number of decisions that need to made when

developing the algorithms.

A basic technique that is often applicable to supporting different type se-

mantics is erasure in which some or all static type information is removed

from the compiled source and replaced with a the use of a base type such

as Object and dynamic type checks. Such an approach may provide a sim-

ple way for new semantics to be supported however it immediately reduces

a key advantage of an OOVM (static type safety), and the dynamic type

checks which may have a significant performance impact. For this reason

algorithms which do not use, or limit, type erasure are to be preferred. That

said, systems can, and have been built almost entirely based on type erasure,

for example the York Haskell Compiler [54].

2.4 Existing Functional Language to Typed Virtual Machine

Compilers

A number of attempts have been made to compile functional languages to

imperative VMs[33, 32, 37]. The problem in attempting to do this is that a

VM designed for non-functional languages will tend to not support the fea-

tures that are required for functional languages to be compiled and executed

efficiently[61]. There are a number of different approaches for allowing func-

tional languages to be compiled for efficient execution, and we will discuss

these and their advantages and disadvantages.

The first approach that we will discuss is to avoid the features of functional

languages that don’t cleanly match the target VM. This approach has been

used in a number of cases, such as the Pizza[37] programming language.

As the CLI (and the JVM) are designed for object oriented languages they

do not support features that an Object Oriented imperative language does

not need. This includes functions implemented as first class objects (and

hence function currying) and non-strict evaluation. To allow efficient execu-

tion, these features are removed or altered in order to better match the base

paradigm of the VM. Thus the end result may be support for only a subset

of the original language to be compiled. However this approach brings with

13

it the benefit of being completely compatible with the VM, and thus the pro-

duced code is usable by any other languages that also target that particular

VM.

Another major approach used to let functional languages run on imperative

VMs is to modify the VM itself by adding extensions that are needed by

functional languages [61]. This type of approach allows for full implemen-

tation of the functional language, whilst retaining fast execution. However

this has the side effect of requiring the user and developer to acquire non-

standard versions of the VM, as any new features will not be present on the

standard implementation. To make such a feature useful outside of purely

research environments it would need to be incorporated into the major ver-

sions of the target VM. Achieving this can be a non-trivial task, especially

if the virtual machine is backed by a formal standard and any modifica-

tions to the VM must be approved by the appropriate standards body. That

said, it is occasionally possible for such features to be integrated into such a

VM as a standard feature; such as parametric polymorphism, which is now

incorporated into the CLI [27].

Finally there exists the possibility of avoiding writing the compiler at all, and

instead relying on the ability of a VM – typically the JVM or CLR – to call

functions in external libraries. In this case a functional program is executed

natively by getting the VM to call the external code. This is the approach

used by the Lambada project [33] to provide Haskell support on the JVM,

and by the “Hugs for .NET” system [9]. The same mechanisms that allow

the execution of external code also allow calls to be made into the VM, thus

providing the functional languages with access to the libraries belonging to

the VM. This approach allows the full feature set of the functional language to

be interfaced with the target VM, and given the functional language is being

executed in it’s own virtual machine, there should be little if any performance

reduction. The principal disadvantage of this approach is it’s reliance on the

external execution of the functional language, this requires that either the

VM for the functional language or the executable itself can be tied to a

specific platform, limiting its portability. For the Haskell language this is

a less significant problem as there are already implementations for many

14

different platforms. However Haskell programs and libraries would still need

to be recompiled for each target platform.

2.5 Interfacing Haskell to an Object Oriented Virtual Machine

Simply developing algorithms to enable a functional language to be compiled

for a given VM is only part of the task. Most VMs come with large software

libraries, which naturally are designed to be used from the languages the

VM itself is designed for. Using the libraries is obviously beneficial; for

example allowing code sharing and assisting language inter-working; but their

computation model may present a problem. For functional languages this has

been investigated by a number of researchers[10, 47, 38].

While there are many aspects to this problem. A simple mismatch which

makes sharing libraries more difficult is that functional languages are built

around modules and functions, while OOVMs are built around the class and

method, One approach to this is to use a class to encapsulate any compiled

module, and define all functions as static members of that class [9, 33, 59].

Related to this issue is the reliance on classes and sub-typing on OOVMs

which is not present in type systems of most functional languages. This

presents a problem mapping types between the two systems[38]. To address

this problem the Lambada system used the Java Native Interface to provide

a bridge[33], and used Haskell type classes to encode object oriented hier-

archies. In other Haskell related work Finne introduced ‘Phantom types’ to

handle the subtyping of classes[10].

Another hurdle is that of enforcing the non-side-effecting semantics of a

purely functional language when interacting with an impure VM. Any func-

tion in a functional language is wholly dependant on its arguments, a con-

straint not enforced by imperative VMs where side effects are required.

Functional language compilers can perform code optimisations which would

be invalid in the presence of side-effects. To address this some mechanism

is required to isolate the functional and imperative code if inter-working is

to be successful. The Glasgow Haskell compiler provides such a mechanism

in its Foreign Function Interface (FFI). By using the FFI it is possible for a

15

developer to reference an externally defined function, and through the use of

monads ensures correct semantic meaning in both Haskell and the external

language [43, 49].

16

Chapter III

Functions and Non-Strictness

In this chapter we will introduce some of the more advanced features of non-

strict functional languages and discuss a number of methods in which they

can be implemented. Initially we will discuss lambda expressions followed by

a discussion of the methods by which partial applications can be processed.

The final feature we will discuss in this chapter is non-strict evaluation.

3.1 Lambda Expressions

Unlike imperative languages, where a very strong distinction is made between

data and functions, functional languages do not distinguish between them in

the same way, allowing both to be used as first-class values. Since they are

first-class values they can be stored, retrieved, and manipulated in the same

way. This has a number of effects on what features functional languages

provide to a developer, including partial applications, which we will describe

in Section 3.2, and lambda expressions.

A natural extension of functions being values is to have expressions which

can create new function values. Such an expression is referred to as a lambda

expression in functional languages and, more recently, as an anonymous del-

egate in C# [26]. While obviously not constrained to functional languages

(lambda expressions were available in Algol 60), it is here that lambda ex-

pressions are used most frequently.

This allows a programmer a degree of flexibility that would not otherwise be

available. While the transformations required to allow a lambda expression

to be used on an OOVM are already well understood, it is necessary to

explain them as a prerequisite to later discussions on how we handle more

advance features.

17

If we take a simple function f x y = x + y we can see that is is logically

equivalent to the declaration f = λ x y → x + y. Both result in the function

f being of type (Number → Number → Number), and they are just different

representations of the same function. Of course, such a use of a lambda

expression has little advantage over a standard function declaration. Lambda

expressions are much more useful when declared as part of a larger expression.

For example wo could use a lambda expression as an argument to map, thus

allowing us to increment each item in a list, without having to define a

separate function:

f l = map (λ x → x + 1) l

In this example the lambda expression is very simple, however it can easily

be used to demonstrate the process known as lambda ‘lifting’ [42]. This is a

process whereby we ‘lift’ a lambda expression out of the expression it is in,

and convert it to a separate function. The original lambda expression is then

replaced by a reference to the new function. Lambda lifting is used as part

of the implementation strategy for lambda expressions.

By applying the above process to our example produces the following pair of

functions:

g x = x + 1

f l = map g l

Here the function g names the lambda expression and a reference to g is used

in place of the lambda expression. Such a simple function could also have

been achieved using partial evaluation, as we will discuss in Section 3.2.

Lambda lifting is more involved than simply extracting sub-expressions. For

example, consider the following generalised version of the above function:

f inc l = map (λ x → x + inc) l

18

Here simply extracting the sub-expression would result in the created func-

tion referencing inc, but inc will not be in scope:

g x = x + inc

f inc l = map g l

Variables such as inc are termed free variables, in a similar way free types can

also occur. To handle free variables and types an environment is introduced,

indicated by {. . .}:

g{inc} x = x + inc

f ′ inc l = map g{inc} l

By applying lambda lifting the function space is made ‘flat’, without any

function definitions nested inside others. This greatly simplifies implemen-

tation.

There are two common implementation strategies for handling the environ-

ment. The first is to represent it explicitly, the free types and variables being

provided to the function through some specialised mechanism. The second

is to represent it implicitly by adding the free variables and types to the

argument list of the lifted function:

g inc x = x + inc

f ′ inc l = map (g inc) l

In this case g has no free variables, but when it is called, only one argument

is used instead of two. This is referred to as a partial application, and we will

discuss these next.

19

3.2 Partial Application

A partial application is the result of calling a function without passing all

of the arguments it needs to evaluate completely. Partial applications occur

frequently in programs written in functional languages, and can be used for

many purposes; for instance incrementing every element in a list of numbers

could be achieved by passing the partial application (1+) as the function

parameter to map. Given the importance of partial applications to functional

languages, they are a feature that is critical to implement as efficiently as

possible. In this section we will discuss the mechanisms by which partial

applications have been implemented, and raise efficiency concerns for each

method.

Before considering how partial applications might be implemented we first

need to review the two main approaches to implementing ordinary (all argu-

ments provided) function calls. Ignoring unimportant, in this context, details

such as register usage the two approaches in summary are:

Push-Enter In this model argument expressions are pushed right-to-left

onto a stack and then the callee is ‘entered’ (called). The callee removes

the arguments it requires from the stack and returns its result. If the

stack is not yet empty the returned result is in turn entered – in a type

correct program it must itself be a function – and so on until the stack

is empty. This is best shown by example, consider:

f x = λ z → x + z

f 3 4

To evaluate this expression the values 4 and then 3 are pushed onto the

stack and the function f entered; this removes its argument, 3, from

the stack and returns the function value λ z → 3 + z; the stack is not

empty so this returned function value is entered, 4 is removed from the

stack and 7 returned. The stack is now empty and the final result is 7.

Eval-Apply This is the traditional method used by most imperative lan-

guages. It is the responsibility of the caller to make the correct number

20

of arguments available, usually by pushing onto a stack, and the callee

assumes they are all present. In a strongly typed system the correct

number of arguments is always made available, though there are some

weakly-typed systems which allow variable numbers of arguments they

are not relevant to our discussion. The name Eval-Apply comes from

function arguments usually being evaluated first and then the function

applied. However when used by a non-strict language arguments may

be passed unevaluated; the important aspect of the model is the number

of arguments passed is known and fixed. The Hope+C[41] functional

language uses this model.

We will now look at how partial applications may be supported using these

two approaches, starting with Push-Enter as this is one of its primary pur-

poses.

3.2.1 Using The Push-Enter Model

The Push-Enter model is used by a number of functional language imple-

mentations, including the Three Instruction Machine, or TIM[8, 46], and the

Spineless Tagless G-Machine[42] used by the Glasgow Haskell Compiler[45]

and Mondrian[40].

From the description above it can be seen that this model can easily support

partial applications – when a callee is entered if insufficient arguments are

available on the stack the available ones can be removed and some represen-

tation of a partial application constructed and returned. Indeed this is one

of the primary purposes of the push-enter model.

The algorithm used on function entry is shown in Figure 3.1. Note that

this is essentially an interpretive algorithm, at runtime tests are performed

and the appropriate action determined. By using threading-style compilation

techniques these tests can be exchanged for indirect-jumps, and though this

may reduce the runtime cost it is not eliminated.

21

ent e r funct i on
i f (normal funct i on)

i f (enough arguments on stack)
eva lua t e funct i on normally

else

remove a va i l a b l e arguments from stack
bu i ld a p a r t i a l app l i c a t i on c l o s u r e conta in ing

arguments and pending arg count
return c l o s u r e

else // app l y ing an e x i s t i n g p a r t i a l a p p l i c a t i o n
i f (enough arguments on stack to s a t i s f y pending

arg count)
eva lua t e funct i on us ing args on stack and args

in c l o s u r e
else

remove a va i l a b l e args from stack
bu i ld new p a r t i a l app l i c a t i on c l o s u r e with union

o f removed args and args from cur r ent p a r t i a l
app l i c a t i on c l o s u r e

c a l c u l a t e i t s pending arg count
return new c l o s u r e

Figure 3.1: Algorithm to perform a function call using the push-enter model.

22

3.2.2 Using The Eval-Apply Model

The eval-apply model is based around placing the correct number of argu-

ments on the stack before calling a function, so the mechanism does not

trivially support partial applications at all. However it is the model com-

monly used for imperative languages, and more importantly in this context,

is the model supported by the major OOVMs.

It is possible to implement the push-enter model on an OOVM which uses

the eval-apply one, for example as done by the Mondrian[40] system; but as

shown by that system this introduces inter-working issues and requires the

use of dynamic rather than static type-checking, with consequential impacts

on performance. Fortunately, as shown for example by Hope+C[41], it is

possible to transform a program which uses partial applications into one

which does not.

We therefore chose to support partial applications by transforming them

away, inline with our goal of maximising compatibility with other code ex-

ecuting on the OOVM. In doing so the runtime overhead present in the

push-enter is shifted to compile time.

3.2.3 Transforming Partial Applications Into Complete Applications

The simplest algorithm for transforming partial applications into complete

ones is to wrap each partial application inside a lambda expression which

takes the missing arguments and performs a complete application. For ex-

ample the partial application (1+) can be replaced by the lambda expression

(λ z → 1+z). Once this transformation is done lambda lifting can be applied

as above.

However in some languages, including Haskell which we are using, determin-

ing whether an application is complete may not be simply a case of comparing

the number of arguments supplied against the type of the function. Consider

the two functions:

p x y = (if x > 0 then sin else cos) y

23

q x = (if x > 0 then sin else cos)

Both p and q are of type Integer → Real → Real. Now if we consider the

applications p 3 and q 3 it is not possible based on types to determine that the

former is a partial application and the latter a complete one. Furthermore

the definitions of the functions may not be available – e.g. they could have

been separately compiled and being used from a library – so they cannot be

examined to determine the difference.

To handle this we introduce the concept of arity, that is the number of pa-

rameters required for a function to actually compute a value. In our example

p has arity 2 while q has arity 1.

Using eval-apply and handling partial applications in the compiler rather

than using push-enter shifts the cost of supporting partial applications from

execution time to compile time, but at the cost of some added complexity

in the compiler. When using the eval-apply method a compiler needs to

be aware of the arity of all function references. The compiler must then

ensure that anytime a function reference is used, the function has the correct

arity; if necessary by performing some type of transform of the underlying

expression. This is required because functions are now called directly – it is

no longer possible to pass some arbitrary number of arguments to a function

and assume the virtual machine will ensure that any applications happen in

the correct order. The problem the compiler now faces is that is is possible

to have multiple functions or expressions that have the same base type, but

may have different arities.

Consider again the functions p and q above. The former requires two ar-

guments in order to produce a full application, whereas the latter requires

two sequential applications of one parameter each in order to completely

evaluate. This means that the compiler may be required to transform any

function or lambda expression used as an argument to the correct arity for

that parameter.

For the following examples we will use the notation {type, arity} to commu-

nicate both the type and the arity of a function. For future references we will

calls this tuple a ‘signature’. In the eval-apply model, all function references

24

(not necessarily the function declarations or lambda expressions) will have

an arity of n− 1, where n is the number of parameters in the type signature

of the function reference. Consider:

f a b c = a b c

where the function f has the type (t → t1 → t2) → t → t1 → t2, where

t, t1, and t2 are type variables. The full signature of the function f is

{{(t → t1 → t2), 2} → t → t1 → t2, 3} (eg. the first parameter is a function

t → t1 → t2 with an arity of 2, while f itself has an arity of 3). In this

case there is no difference between the signature of an equivalently typed

anonymous function reference and the signature of the function declaration.

However, if we refer to our previous examples of identical type but different

arities:

p x y = (if x > 0 then sin else cos)y

q x = (if x > 0 then sin else cos)

The signature of p is {Int → Real → Real, 2} whereas q has the signature

{Int → Real → Real, 1}. Consider now using these as parameters to the

function f :

h1 = f p 1 2

h2 = f q 1 2

For correct operation not only must the types match but also the arities.

Examining h1 shows that all the parameters have the correct arity, however

when examining h2 reveals that the function q does not match the arity

required (2). Therefore the body of h2 must be transformed to supply an

argument of the correct arity. This is simply achieved by wrapping the

expression in a lambda of the correct arity:

25

h2′ = f (λ a b → q a b) 1 2

All arguments now have the correct arity, but there is one minor transfor-

mation required – g is being applied to two arguments, but it only takes

one and returns another function which consumes the second. It is a trivial

transformation to examine the expression and break it into its constituent

applications producing:

h2′′ = f (λ a b → (g a) b) 1 2

3.2.4 Discussion

We can see now that the two mechanisms used to provide partial applica-

tions differ drastically in complexity and in the amount of work required by

the compiler. Currently there is much debate over which mechanism is the

‘best’. Many functional languages use the push-enter model as their primary

execution model, although they often optimise full applications of global

functions by reducing them to direct calls [42, 45]. Despite this, some recent

studies have shown that the eval-apply method result in faster execution at

runtime [30]. Given the reports of improved performance of the eval-apply

model, and the fact that it is the underlying model of the CLI we have chosen

to use it rather than push-enter for our experimental compiler, as discussed

in Section 9.

3.3 Non-Strictness

Non-strict evaluation is a mechanism by which no expression is evaluated

until the result of the expression is required. Non-strict evaluation can take

many forms, either through the implicit laziness of Haskell and similar func-

tional languages, or explicitly, as in the LISP programming language. A lim-

ited form of non-strictness is provided in many imperative languages, where

it takes the form of short-circuit evaluation of boolean expressions (and the

conditional operator if the language supports it).

26

In addition to language level support, non-strict evaluation can also be man-

ually implemented by developers in other languages; for a very wide range of

tasks. The archetypal example of non-strict evaluation in such cases is the

Proxy design pattern [13], which describes a number of uses for proxies, eg.

cases that benefit from non-strict evaluation. These include such applications

as web browsing, graphics, text editing and numerous other tasks from many

different fields. An advantage often cited in fully non-strict languages is the

seamless handling of potentially infinite computations, such as generating

lists containing values from an infinite series.

Non-strict evaluation is not a required feature of functional programming

(many examples of strict functional languages exist, such as ML and its

descendants), however it is present in many, including Haskell.

Fully automatic non-strict evaluation is not practical within object oriented

languages, as they (along with most imperative languages) rely heavily on a

predefined order of evaluation[29] at execution time. Since non-strict eval-

uation is not present in object oriented languages, OOVMs do not provide

native support for non-strict evaluation. For this reason it is necessary to

develop a mechanism by which non-strictness can be provided.

The first approaches to implementing non-strict evaluation on top of object

oriented virtual machines required explicit evaluation (through calls to ‘eval’

functions)[34] code. As such, while suitable for functional language only

environments, they do not meet our goal of inter-working well with other

code executing on the OOVM.

A more recent development is JIT Objects[39]. By leveraging the OOVMs

sub-typing mechanisms JIT Objects provide a transparent way to suspend

the evaluation of expressions in both functional and imperative languages.

The original work demonstrates JIT Objects in use in C#.

However JIT Objects as originally specified have a mismatch with those

languages, such as Haskell, where rather than the exact type of a suspended

expression being known it is only known to be one of a family of related sub-

types. This occurs in Haskell where the suspended expression has algebraic

type. We return to this problem in a later chapter.

27

28

Chapter IV

Types

In this chapter we introduce the key aspects of the type systems used by

functional and imperative object-oriented languages that are relevant in our

context of supporting functional languages on OOVMs. To make the discus-

sion concrete we will use Haskell in the functional language description and

C# when describing object-oriented languages. In the next chapter we will

look at how the type system used by functional languages may be mapped

onto an OOVM.

4.1 Functional Language Types

Algebraic types and records will be the first feature we will discuss, as they

are central to functional languages. This introduces parametric types and

this leads to parametric polymorphism (Section 4.1.2). Section 4.1.3 will

describe the concept of type classes provided by Haskell.

4.1.1 Algebraic types and Records

The algebraic type is the basis of typing in a functional language. In this

section we will introduce the features of algebraic types, and discuss how

they are used. We will also examine Haskell records and show that they are

equivalent to algebraic types, and hence do not need to be treated differently.

Algebraic types are the basic type construct of functional languages, allowing

a user to define structured types and unions. A data type consists of a name,

a set of type parameters, and a set of constructors, eg.

29

data I n tL i s t = Cons Integer I n tL i s t | Ni l

In this example IntList is the name of the type, and Cons and Nil are

termed constructors. The Nil constructor is what is a referred to as a nullary

constructor as it does not contain any fields. The Cons constructor does have

fields however, one of type Integer, the other of type IntList. In other words

IntList is a tagged (Cons and Nil) disjoint union of two types (the pair

Integer IntList and the void type).

Algebraic types may also be parameterised so that they describe a family of

types:

data List a = Cons a (List a) | Ni l

In this example List is termed a type constructor, a is a type parameter.

Such a type is called a parametric type.

To handle algebraic types a mechanism called pattern matching is provided

which combines constructor testing and field extraction [20]. Simple match-

ing, in which no conditions are made when matching against a field, is also

known as decomposition. The following example (using the above IntList

type) demonstrates both constructor matching and decomposition:

length : : I n tL i s t −> Integer

length Ni l = 0

length (Cons head ta i l) = 1 + (length ta i l)

This function computes the length of a IntList, the first line matching against

the Nil constructor, the second matching the more complex Cons construc-

tor. This basic match has separated handling of the Nil and Cons con-

structors, in a fashion similar to switch on type technique used for unions in

imperative languages. When we examine the Cons branch of length we can

see it is matching the two fields of the constructor to two variables, head and

tail.

Since the fields in a constructor are not labelled, complex constructors may

become difficult to manage and use. For this reason Haskell [44] provides

support for records. Records are a special kind of data type, where there is

only one constructor, however that constructor is able to name each field. It

30

is important to realise that records are not in fact any different from standard

algebraic types, but instead are a purely syntactic addition, for this reason

we will not discuss them further.

Functional languages also usually provide special syntax for tuple types. The

type (t0, ..., tn) (where n 6= 1) is equivalent to the parametric algebraic type:

data Tuple(t0, ..., tn) = Tuple t0 ... tn

4.1.2 Parametric Polymorphism

Most functional languages support parametric polymorphism where functions

may be defined to operate over many types. Consider the following version

of length function in Haskell:

length : : List Integer −> Integer

length Ni l = 0

length (Cons head ta i l) = 1 + (length ta i l)

This computes the length of a value of type ListInteger, a parametric type.

Clearly an almost identical function could be written to compute the length

of a ListChar – the value of the parameter to List does not effect the al-

gorithm. To address this functional languages support parametric polymor-

phism where type variables may be used in place of types:

length : : List a −> Integer

length Ni l = 0

length (Cons head ta i l) = 1 + (length ta i l)

Here a is a type variable and length may now be applied to a list of anything.

Type variables are not restricted to being used in parametric type signatures.

For example:

revApp : : a −> (a −> b) −> b

revApp x f = f x

Defines a ‘reverse application’ function, such that revApp y g is equivalent

to g y, which can be applied to any functions and values which match the

signatures a → b and a respectively.

31

4.1.3 Type Classes and Instances

Type Classes were developed as a mechanism to provide a higher-level and

more capable alternative to ad-hoc polymorphism (overloading) to functional

languages in general, and Haskell in particular [65, 18]. A type class enables

the types that may be substituted for a type variable to be constrained to

those which provided a particular set of functions, namely those specified in

the type class. For example consider the standard Haskell class Eq :

class Eq a where

(==) : : a −> a −> Bool

This defines the class Eq to contain a single function (==) of type a → a →

Bool. In a type signature the term (Eq a) represents a context or constraint

on a requiring any type substituted for a to implement the Eq class, which

in turn means that a (==) function is available over values of type a even

though the actual type substituted for a is unknown. For example:

no t equa l : : (Eq a) => a −> a −> Bool

not equa l a b = not (a == b)

In order to use the not equal function we need to define an instance of Eq

for some type. For example consider an instance with the Bool type:

instance Eq Bool where

(==) = boolEquals

boolEquals True True = True

boolEquals False False = True

boolEquals = False

The not equal function can now be used with Bool, and any other type for

which an instance of Eq is defined.

We have shown that when defining a function a context may be provided to

allow that function to use a class, this can also be applied to the definition

of instances. For example by providing a context an instance for List a for

all types a for which Eq is provided can be defined (as shown in Figure 4.1).

32

instance (Eq a) => Eq (List a) where

(Cons lh l t) == (Cons rh r t) = i f (lh == rh) then

l t == r t
else

False

Ni l == Ni l = True

== = False

Figure 4.1: An instance of the Eq type class covering Lists. We can see the
use of the context Eq a, thus allowing Eq List a to exist for all types that
provide an instance of Eq.

4.1.4 Higher Ordered, Ranked, and Kinded Types

In this section we discuss a series of extensions to the basic types that we

have already discussed, starting with simple higher order types, followed by

an introduction to higher ranked types. Finally we discuss higher kinded

types.

Higher ordered types are one of the most fundamental types of any functional

language, they represent the ability of a function itself to be treated as a value

(a task imperative languages tend to use function pointers or delegates for).

This allows functions to be passed to and returned from other functions, thus

providing a very simple mechanism to control what actions are performed in-

side that function. Many standard design patterns [13] (Iterator and Functor

being prime examples) can be replaced trivially with higher ordered types.

However higher ordered types cannot reference polymorphic functions, in-

stead the polymorphic functions must have had any required type arguments

bound in advance. There are rare cases where it may be desired to have a

function reference that is itself polymorphic, and in these cases it may be

difficult to remove this requirement [48], for this reason a number of func-

tional languages now provide support for them (including Haskell through an

extension provided by the Glasgow Haskell Compiler). These polymorphic

function references are referred to as higher ranked types, and we discuss

them in further detail in Section 8.

Finally Haskell supports higher-kinded types. Higher-kinded types are the

33

type equivalent of higher-order functions. In the parametric types described

so far a type variable may only be substituted by a type. In a paramet-

ric type declaration, such as List a, the type name (usually termed a type

constructor), List, is a function over types; that is it takes a type ‘a’ and

returns another type ‘List of a’. A higher-kinded type variable may only be

instantiated with a type constructor [55]. Using higher kinded types allow a

function to operate over any algebraic type, rather than a specific type such

as List. Through this ability a function may be defined to allow it to operate

over a list or a tree structure, without requiring different definitions. Higher

kinded types are described in more detail in Chapter 7.

4.2 Imperative Object-Oriented Types

There are many imperative languages in existence today and a large number

of these have support for object oriented concepts. There are dynamically

typed languages like Python [51], Ruby [53], and Smalltalk [24], as well

as large numbers of statically typed languages ranging from Java [17] to

C++ [56] to Eiffel [25], each with varying degrees of ‘purity’. For these

reasons this section will be devoted primarily to the most basic concepts of

imperative OO languages.

As they are the building blocks of OO languages the first constructs we

discuss are classes and structures (Section 4.2.1). This discussion is followed

by a brief coverage of primitive and value types provided by the CLI itself in

Section 4.2.3.

4.2.1 Classes

Classes are the central type structure of object-oriented languages (there are

OO languages which are not centrally class-based, we shall not refer to these

further). A basic class is a collection of named fields, a product in type terms

– much like the tuples in functional languages. For example consider:

class Point

{

34

f loat xCoord ;

f loat yCoord ;

}

This defines a C# class Point with two float fields named xCoord and

yCoord (a similarity to tuples and records in Haskell should be apparent

at this point). If the Point class is subclassed (see Section 4.2.1) the fields

xCoord and yCoord will be inherited by the subclass.

Methods

Functions defined as part of a class are referred to as methods, and we will

use this terminology to distinguish between functions defined globally, and

those defined as part of a class. As with fields, methods are inherited when

subclassing, however how they are inherited, and what subsequent behaviour

they specify can be controlled.

For example consider:

class Rectangle

{

Point corner ;

f loat width ;

f loat he ight ;

public f loat Area () { return width ∗ he ight ; }

}

This represents a rectangle with a method to compute the area. The syntax

of how these methods are called is not important for our purposes. However

it is worth noting the distinctly different approaches of functional and OO

languages here: in a functional language functions and data are usually de-

fined separately while in on OO language the methods are defined as part

of the classes. This will effect how functional languages are mapped onto

OOVMs.

35

Subclassing

Classes can depend, or be derived from, other classes using subclassing, or

inheritance, which is mechanism which combines method overriding and sub-

typing. If a class A subclasses a class B then class A can be used in any place

that class B would be required. While it is technically possible to provide

support for multiple inheritance in an object oriented system [25, 56] mod-

ern OOVMs provide only limited support for it, we discuss these restrictions

later in this section.

For example consider:

class ColouredPoint : Point

{

Colour c ;

}

This defines a class ColouredPoint which has three fields in total; c, xCoord

and yCoord. A value of type ColouredPoint may be used wherever one of

type Point is required, but not vice-versa.

The methods defined over a class may either be virtual, non-virtual, or ab-

stract (exact terminology varies between languages). When a method is im-

plemented it may be defined as either virtual or non-virtual. If the method

is virtual any subclass of the containing class may redefine the method, thus

providing an ability to override the original implementation of that method,

in this case a class is effectively combining the goals of a type class and an

instance. Any attempts to call the original method on an instance of the

subclass will be diverted through to the new implementation. If a method is

non-virtual it is not possible for the method to be overridden.

If a method is declared to be abstract it means there is no initial implementa-

tion, eg. it behaves in the same way a function defined in a type class behaves.

If a class contains any abstract methods it is called an abstract class. Ab-

stract classes cannot be directly instantiated, instead only subclasses of the

abstract class may be, provided the subclass has provided implementations

of the abstract method. By definition an abstract method must be virtual

36

and thus may be overridden by a subclass of the class that initially provides

in an implementation.

Interfaces

As mentioned earlier imperative object oriented languages may provide sup-

port for multiple inheritance, but this is not supported in the major virtual

machines. Instead OOVMs such as the CLI and JVM provide a restricted

form of multiple inheritance through the use of interfaces. An interface is a

special construct that can only define abstract methods, and cannot contain

data. In this way they match the behaviour of type classes almost exactly,

though the interface is implemented through subtyping, rather than declaring

an instance of the interface that operates over a particular data type.

In order to better describe the OO structures we will be referring to in this

thesis we will be using the Unified Modelling Language (UML) [11]. A dis-

cussion of UML is beyond the scope of this document, so it assumed that

the reader has at least a passing knowledge of the meaning of UML class

diagrams.

4.2.2 Generic Classes and Methods

Some OO languages and OOVMs also support generics which equate to the

parametric types and polymorphic functions found in functional languages.

For example the following defines a generic C# class similar to the 2-element

tuple of Haskell:

class Pair<A, B>

{

A f s t ;

B snd ;

. . .

}

And a generic method to swap elements of a Pair could follow the template:

37

Pair<B, A> swap<A, B>(Pair<A, B> arg) { . . . }

Generics are a recent addition to OOVMs and not only enhance the OO

environment but greatly assist the mapping of functional languages with

polymorphic type systems, as covered in the next chapter.

4.2.3 Primitive and Value Types

While early OOVMs followed the ‘semi-pure OO’ model, where all values

are objects except the built-in primitive types (such as integers etc.), more

recent OOVMs provide direct support for general user-defined value types in

addition to object-based ones.

In particular the CLI provides full support for value types; which can have

their own methods and implement interfaces, as with classes. However sub-

classing is not provided. Finally for every value type defined a matching

object type, termed the boxed type, is also declared and operations to covert

back and forth from the value to boxed types provided. In C# these opera-

tions are largely automatic.

In addition to the primitive types and custom value type the CLI also pro-

vides support for enumerated types. Enumerated types provide a mechanism

to define a set of constant values which may be used with a degree of static

type safety (there are a number of mechanisms that can violate the safety of

an enumerated type on the CLI, though these are beyond the scope of this

thesis).

38

Chapter V

Converting Functional Types to an Imperative Object

Model

In this chapter we will introduce the basic mechanisms used to convert the

core of the Haskell type system to the structures of an OOVM. Much of

this material has previously been introduced previously by the Mondrian

Project [40], the F# [59] language, or plain common sense. While some new

approaches have been used, the primary purpose of this chapter is to provide

a context for the following chapters on non-strictness, higher ranked types,

and higher kinded types.

Section 5.1 will discuss the mechanisms and constructs used to support stan-

dard Haskell’s algebraic types. This is followed by the systems required

to support type classes and instances in Section 5.2, and finally we discuss

support for higher order types in Section 5.3.

5.1 Algebraic Types

As discussed in Section 4.1.1 algebraic types are the fundamental form of

structured type used by Haskell, and most other functional languages. There-

fore it is critical that a fast and effective mechanism is available to support

both the types themselves, and access to their constructors. In this section

we will describe the mechanisms developed by Mondrian and F# to support

algebraic types.

For the following discussion we will use the simple List type, and the corre-

sponding length function:

data List a = Cons a (List a) | Ni l

39

length : : List a −> Int

length Ni l = 0

length (Cons l) = 1 + (length l)

The first definition describes a new List type, with a type parameter a,

and two constructors; Cons and Nil. In this case Cons has two fields, one

of type a, and the other of type List a. The second definition describes a

length function that determines the length of the given List. Together these

two definitions use the important features of the Haskell algebraic types,

and therefore provide an ideal base from which to described the conversion

process.

An algebraic type is a tagged (the constructors) disjoint union, one possible

mapping of this onto an OOVM is to use one class, termed the root class,

to represent the algebraic type itself, and sub-classes of the root class to

represent each constructor [37, 40, 59]. In the event that the type has type

parameters we have the choice of either performing type erasure, in which

we replace all type parameters with a generic Object reference, or relying

on VM support for parametric types and adding these type parameters to

the root class of the algebraic type. As the type erasure approach effectively

removes any ability to retain static type information of algebraic types with

type parameters we will ignore this mechanism, and instead assume that

the target VM supports parametric typing. Figure 5.1 shows the result of

applying these techniques to the List type above.

In order to prevent modification (from other languages accessing the data

structure) we shall actually map constructor elements to private fields and

provide accessor methods (or properties) for them.

Functional languages perform ‘switch on constructor’ operations to determine

which code branch to take. Using the class/subclass mapping this can be

done using dynamic type checks and an if/then/else if pattern. However this

would be relatively slow. Functional language implementations on standard

machines typically support this feature by storing a small tag value in each

constructor representation. We adopt the same technique and add a tag

property to the root class.

40

Figure 5.1: Classes defined for the List type.

While the tags could be any quickly comparable type, we have used an enu-

meration as these also provide much greater feedback to developers accessing

Haskell algebraic types from other languages. The other concern is how the

tags are accessed; if the tag is stored by value in the root class of a type

it can be accessed through a direct field operation (once again the tag field

would be encapsulated by a method, but modern OOVMs attempt to inline

trivial accessor methods [57]) however doing so would result in every instance

of the type requiring more memory than might otherwise be required. The

alternative is to use virtual methods that return the tag explicitly, this saves

on the space requirements of storing the tag value itself, but adds the rela-

tively expensive cost of a virtual call. Whichever approach is taken, the net

effect is the same as it will be possible to query the tag of any algebraic type

instance, and hence perform the switch on constructor type.

This final structure gives us full support for strict algebraic types, for details

of how support for non-strictness is added to this structure see Chapter 6.

The final system produced for the List type we have been using is shown in

Figure 5.2.

41

Figure 5.2: Classes defined for the List type with tags.

5.2 Type Classes and Instances

Type classes and instances were described in Section 4.1.3 as a mechanism

to provide support for function overloading. While described as a distinct

concept Haskell compilers typically compile classes into method dictionaries,

that is records containing one method reference per class member, and calls to

class methods first index into this dictionary to obtain the applicable method

reference. By transforming the Eq class and Eq Bool instance (repeated in

Figure 5.3) we can produce the set of functions and types shown in Figure 5.4.

Since we can transform type classes and instances into standard types there

is no specific need to treat them distinctly. While such an approach would

work, the way in which type classes are used is very well structured, and is

amenable to a more OOVM friendly implementation. Section 4.1.3 discussed

the similarity between type classes and interfaces on an OOVM, and we will

now make use of this fact.

As most uses of fields of the type class constructor will be direct application

of the functions contained, we can convert the explicit dictionary extraction

42

class Eq a where

(==) : : a −> a −> Bool

instance Eq Bool where

(==) = boolEquals

instance (Eq a) => Eq (List a) where

a == b = . . .

Figure 5.3: The Eq class and the Eq Bool and Eq List instances described
in Section 4.1.3.

data Eq a = Eq (a−>a−>Bool)

dictEqBool : : Eq Bool

dictEqBool = Eq boolEquals

(==) : : (Eq a) −> a −> a −> Bool

(==) (Eq eqFun) = eqFun

not equa l s : : (Eq a) −> a −> a −> Bool

not equa l s context a b = not ((==) context a b)

Figure 5.4: Conversion of Eq class, Eq Bool instance, dictEqBool, and the
not equals function to use standard types.

43

Figure 5.5: The Eq type class, and the instance for Eg (List a).

above into an implicit dictionary using virtual methods. This is done by

converting the dictionary type into an abstract class, as shown in Figure 5.5.

Instances can than be implemented through subclassing the dictionary class,

although care must be taken when an instance depends on the existence of

another instance, as in the case of Eq (List a). In that case references to

required instances are stored as fields of each instance of the dictionary class.

The superclass structure defined for type classes is, in effect, a standard ap-

plication of a context. For this reason any super classes are accessed through

fields in the same manner as function members of the type class. Figure 5.5

shows the structure for the instance Eq (List a).

It may at first be thought that OOVM inheritance could be used implement

the dependency relation between type classes. However a type class can

depend on multiple other type classes, and most modern OOVMs do not

support multiple inheritance in any form other than the limited features

of interfaces. These limitations, combined with the potential for ambiguous

functions (when inheriting from numerous type classes with the same function

types) mean that using multiple interface dependencies would be difficult for

type class dependencies. Therefore we have followed the standard approach

to compiling type classes, and provide access to super classes through explicit

44

Figure 5.6: A class representing a function of type Int → Int → Int with
arity two.

fields and properties in the type class, as we do with a standard context.

5.3 Higher Order Types

Higher order types, or function values, are relatively trivial to provide on an

OOVM simply by using the Command design pattern [13]. In this we first

declare a base type for a given function type which will act as the base OOVM

type for that function type. As with the command pattern an invocation

method is present in this class (in all of our examples this will be the invoke

method) with a signature that matches the type encoded. Figure 5.6 gives

the class produced for the type Int → Int → Int with an arity of two (see

Section 3.2 for a description of arity).

Creating a separate interface or class for every function type would result in

large numbers of distinct types and be difficult to coordinate. Furthermore

most OOVM’s use name, and not structural, equality; if one compilation pro-

duced a class for a given function type it would not be directly compatible

with a class produced in a different compilation for the exact same func-

tion type; severely impacting the use of separate compilation and libraries.

For this reason we use a number of parametric classes to represent different

function types. Each type parameter represents the type of the correspond-

ing type in the function type signature, and different instantiations of these

parametric types with the same type parameters are compatible, as shown

in Figure 5.7.

This approach raises the question of how many of these parametric function

types should be provided; they cannot simply be created on-the-fly as differ-

ent compilations must use the same types or they will not be compatible. In

45

Figure 5.7: Generic Function class for representing higher order types.

practise functions do not have large numbers of parameters. Therefore only

a small number of these types may be provided (the experimental compiler

described in Chapter 9 provides support for a maximum of 7 parameters),

without imposing a significant limitation on programs.

Whenever it is necessary to create a higher order type (eg. a partial applica-

tion, lambda expression, or passing a function reference) the expression to be

passed is placed inside the invocation method of a subtype of the appropriate

function type. As discussed in Section 3.1 it is possible that free variables or

types may be present in the expression we are attempting to pass. This en-

vironment can be trivially stored either as fields in the case of free variables,

or as type parameters to the subtype, as in the case of free types.

46

Chapter VI

Providing Non-Strictness to a Strict VM

Historically it has been difficult to allow a developer to use code which was

written to benefit from a certain language feature in one language from within

another language. Doing so often relies on awkward and complex mecha-

nisms, such as GHC’s Foreign Function Interface [4]. Such mechanisms are

cumbersome but nonetheless allow a degree of interaction between languages.

The development of the CLI (see Section 2.2) however has provided a virtual

machine that allows many languages to coexist and communicate uniformly,

thus allowing a developer to easily use code written in multiple languages;

taking advantages of the features offered in each. Ideally this platform would

permit developers using strict languages to make use of the lazy evaluation

features of languages like Haskell in order to lighten development efforts.

Our goal is to support non-strict evaluation on an OOVM so that systems

for non-strict languages can target the OOVM. Furthermore we aim to do

this in a way which allows non-strict values to be consumed by strict code

with the minimal impact on those languages, if not transparently, so that

those languages need never know the values they are consuming are being

generated lazily by functional language code.

In the Section 6.1 we describe how non-strictness has been traditionally sup-

ported on conventional architectures. This is followed by an overview in

Section 6.2 of current developments for non-strict support on OOVMs. We

then discuss why the existing methods are not suitable for our purpose and

introduce a development of them in Section 6.3. In Section 6.4 we then

present a new algorithm developed from JIT Objects for supporting non-

strictness for functional languages. Finally Section 6.5 will discuss the steps

47

necessary to support non-strict evaluation in a functional language system

based on the techniques presented in Section 6.4.

6.1 Support for Non-Strictness on Conventional Architectures

As stated in Section 3.3, a number of languages currently support non-

strictness at the language level, so automatic mechanisms to compile non-

strictness have been developed. The standard approach used to provide non-

strictness on real hardware is to create a thunk. Thunks were originally used

to provide the call-by-name semantics of Algol 60 (a precursor to modern

non-strict evaluation), but in modern OO systems would be considered to be

an implementation of the Proxy Pattern. The processes of delaying evalua-

tion of an expression by placing it into a thunk is referred to as suspension,

and the expression itself is said to be suspended.

A thunk consists of a reference to code to evaluate the suspended expression,

and an environment containing data needed for that evaluation. Once the

result is requested the code referenced by the function is executed and the

resultant value returned. So called ‘fully lazy’ implementations optimise this

and store the returned value in some way, removing the need to re-evaluate

it should it be required again – this of course can only be done if the value

computed by the suspension is immutable. Functional languages are usually

implemented using the full laziness technique for efficiency.

The fully lazy method may introduce ‘indirection’ nodes into the system –

once evaluated the thunk is marked and the result cached within it, subse-

quent references first find the thunk and then the by now computed result

within it. Various techniques are used to remove this indirection once eval-

uation has taken place.

Provided some mechanism exists that can be used to reference code (such as

a function pointer or virtual functions) the implementation of a thunk is a

trivial matter. A number of techniques have been developed to allow the use

of thunks to provide non-strictness [39], however most take the approach of

allowing data references to refer to either a thunk or an actual value and then

using flags to distinguish between thunk and value references. In type terms

48

a location of type T needs to be given the type such as T ∪ (void → T). This

is required as it cannot in general be known in advance whether a particular

expression needs to be suspended, and so whether a given value will be a

suspension or not.

Implementing this technique on real hardware is relatively simple, as the un-

derlying memory model is untyped storing either a value or a thunk reference

poses no difficulties. However once we move to an OOVM, such as the CLI,

this picture changes dramatically. One of the key features of an OOVM is a

typed memory model.

By using a typed memory model an OOVM can prevent unsafe operations

from corrupting data, but in the process it must restrict what a program can

do. In particular the type systems of current OOVMs do not support typing

locations/references with a type such as T ∪ (void → T), exactly the kind of

type used in the implementation of non-strictness. In the next section we will

overview existing work to overcome this restriction and why it does not fit

algebraic types well. We then introduce our new algorithm which does handle

algebraic types, and the full type system, of non-strict functional languages.

6.2 Non-Strictness on OOVMs: Current Developments

The simple model described in Section 5.1 provides full support for all data

types in the Damas-Milner type system on an OOVM, however it does not

provide any clear way to provide non-strict evaluation. Many methods have

previously been described to extend (or replace) this model in order to pro-

vide support for non-strictness on an OOVM, however these frequently rely

on either complete type erasure (replacement of all explicit types with generic

object references) [54] or explicitly checking whether it is necessary to eval-

uate a value prior to use [40]. We have already said that our goal is to

statically type all generated code, so type erasure is not an ideal solution.

Explicit checks also directly contradict our goal of making non-strictness

transparent to other languages.

Recently however the JIT Objects technique was developed that allows non-

strict evaluation to occur transparently.

49

6.2.1 JIT Objects

The JIT Object [39] model was developed to enable any language to create

and consume suspended instances of object types on OOVMs. The basic

algorithm is to use a proxy object when a ‘suspended’ instance of an object

is required. This proxy embodies the code and environment needed to create

the real object when demanded. To fit into the OOVM type system as

transparently as possible these proxy classes are generated as subtypes of the

type for which non-strictness is desired. For example, consider a C# style

List class:

class List<A>

{

private A head ;

private List<A. t a i l ;

public A getHead () { return head ; }

public List<A> ge tTa i l () { return t a i l ; }

}

This is a linked-list in OO style. A JIT Object for List is an automatically

created subclass which embodies the computation needed generate a particu-

lar instance of List. As shown in Figure 6.1, the proxy class acts as a caching

wrapper for a thunk (as described in Section 6.1).

A crucial benefit of the JIT Object approach is its transparency. As the au-

tomatically generated proxy object is a subclass of the type being suspended

standard OOVM type testing and casting operations work as expected. For

example, using C# the expression:

obj is List<int>

will evaluate to true for instances of both List < int > and the proxy type

NSList < int >. It is only creator of the object that knows it is suspended,

the consumers of the object can be completely unaware.

The JIT Object model was demonstrated for the C# language, and such

diversions as ‘infinite’ lists of primes easily produced.

50

Figure 6.1: The JIT Object structure for the C# List type.

6.3 Algebraic types vs. JIT Objects

JIT Objects and algebraic types are somewhat of a mismatch. To demon-

strate this we compare the C# List type in the previous section with that

produced for the standard functional language algebraic List by the trans-

formations described earlier:

// data L i s t a = Cons a (L i s t a) | Ni l

abstract class List<A> {}

class Cons<A> : L i s t<A> { . . . }

class Nil<A> : L i s t<A> { . . . }

A JIT Object for C# can proxy the single List type, but in the above there

are three types: List, Cons and Nil. A naive application of JIT Objects

would allow proxies for each of these types, however in source language terms

only values of type List are suspended, Cons and Nil are not types. The first

observation is therefore that only JIT Objects for List should be generated.

The proposed type structure is shown in Figure 6.2.

51

Figure 6.2: List structure with non-strict support – first attempt.

Consider the following simple Haskell function which filters a list by removing

all elements for which the supplied predicate is true:

f i l t e r : : (a −> bool) −> [a] −> [a]

f i l t e r [] = []

f i l t e r p (h : t) | p x = h : (f i l t e r p t)

| otherwise = f i l t e r p t

When translated onto an OOVM an application of filter may return an

instance of Cons – for non-empty results – or an instance of Nil – for empty

results. Which will occur is data dependent.

Consider suspending a call to filter and using JIT Objects as the implemen-

tation method. The type of a call to filter is List, so a JIT Object of List is

created. A JIT Object provides all the methods of the object it is proxying,

in this case we only have getTag.

Having created a suspension we demand the value. This will occur when

compiled code examines the result of the filter call by calling getTag to

determine if it is a Cons or Nil. The call to getTag will trigger evalua-

tion of the JIT Object, an instance of either Cons or Nil will be created,

and the resulting instances’ getTag invoked to obtain the final result – all

transparently behind the scenes by the JIT Object machinery.

52

Up until this point nothing has gone awry, everything behaves as expected.

However, having now determined which of the constructors is present, the

compiled code may need to access the constructor, and following the alge-

braic transformation model that will be done using an OOVM type cast.

Unfortunately the JIT Object is a proxy of List and cannot be cast to either

a Cons or Nil. Casting to List is not an option, though it is type correct to

do so, as List does not provide the members of either Cons or Nil and the

purpose of the cast is to access such members.

The difficulty has arisen due to the nature of JIT Objects – they work by

proxying an object and in doing so must provide the same members as the

object they proxy. What a JIT Object does not do is return the object it is

proxying, and in the case of the algebraic transformation model that is what

is required. Which suggests a solution to the difficulty, as explained in the

next section.

6.4 Non-Strictness for Functional Languages

We adapt the algebraic transformation/JIT Object combination model to

include methods on the root class which ‘cast’ an instance to one of the child

types which represent the alternatives of the algebraic type. In conjunction

with the existing getTag method we now have both type testing and casting

operations as required. The new type structure is shown in Figure 6.3.

Unfortunately this change in approach reduces the transparency of JIT Ob-

jects when applied to algebraic types In the original strict transformation for

algebraic types each constructor is a subclass of the root class; a reference

with the static type of the root class will have a dynamic type of one of the

constructor classes and standard OOVM type test and cast operations may

be used to determine and access the dynamic type.

However with the introduction of non-strictness a dynamic instance repre-

senting a particular constructor may either be an instance of the constructors

class or an instance of the thunk class. A standard OOVM type test will not

identify the thunk class as anything other than the thunk class, and as the

thunk class is a sibling of the constructor class an instance of it cannot be

53

cast to the constructor class. Therefore, unlike with the original JIT Objects,

the machinery can be seen.

There is a positive benefit that balances this loss of transparency. Under

the original JIT Object model the proxy may remain in place long after

evaluation has taken place, depending on the particular implementation of

JIT Objects and how deeply they are embedded into the OOVM. The cast-

ing operations of the algebraic JIT Objects return a direct reference to the

evaluated object, thus removing the indirection through the proxy.

The added casting operations are provided by virtual methods defined on

the root class of the algebraic type:

A default implementation in the root class throws an exception (to improve

consistency with the rest of the CLI our experimental compiler throws Class-

CastExceptions as would occur from an illegal cast). Each particular con-

structor subtype overrides the appropriate cast method and simply return

this. The JIT Object proxy subtype, following the model, just proxies the

cast operations.

This approach provides full support for non-strictness, however this is at the

cost of some transparency as we have lost support for standard casts. This

method is an improvement over earlier techniques where a developer would

be required to manually trigger the computation of a thunk, whereas our

mechanism allows a consistent approach to all non-strict types that does not

rely on external knowledge of the underlying data or thunk.

6.4.1 Non Strictness for Boxed Primitives

While the solution given in Section 6.4 provides full support for non-strict

evaluation, in cases where only one subtype is present, in particular for the

primitive types, a more optimised approach is possible.

For the primitive types we use a general parameterised class to wrap them

all, as shown in Figure 6.4. This effectively merges the thunk class and the

constructor class into a single class. While this marginally increases memory

usage when evaluation has not been suspended the burden is countered by

54

Figure 6.3: The final structure used to store the List type. Note the asNil
and asCons methods.

the many advantages of this mechanism. One of the most significant is the

improved performance attainable by removing virtual calls from accessing

fields. There are a number of other possible performance and resource im-

provements that can be made but they are dependant on a large number of

relatively minor design decisions.

A secondary advantage of this mechanism is that it aids interoperability of

primitive types, as these are the most likely types to be explicitly manipulated

by external languages (as described in Chapter 5 the data types of functional

languages are much more readily manipulated by a functional language).

This is done by including user-defined conversions (casts) between the non-

strict boxed type and the OOVM native primitive types. While not a part

of the type system directly (the compiler must replace casts with a function

call itself) they are transparent to any developer using them.

6.4.2 Non-Strict Function Values

In Section 5.3 we discussed support for higher order types (or function val-

ues) on an OOVM. The methods discussed there support all the operations

55

class Boxed<ValueType>
{

private ValueType value ;
private Function<ValueType> thunk = null ;
public Boxed (ValueType value)
{

this . va lue = value ;
}

public Boxed (Function<ValueType> thunk)
{

this . va lue = default (ValueType) ;
this . thunk = thunk ;

}

public ValueType Value
{

get

{
i f (thunk != null)
{

this . va lue = thunk . invoke () ;
thunk = null ;

}
return this . va lue ;

}
}

}

Figure 6.4: C# code illustrating the basic Boxed type for allowing non-
strictness for primitive types.

56

Figure 6.5: The class structure to allow non-strict evaluation of higher order
types.

required for them to be used correctly, but do not provide any mechanism to

allow function values themselves to be generated non-strictly.

While a function value is just represented by a class type, and so the above

techniques for non-strict algebraic types can be applied, given the obvious

need for all functions to be callable as efficiently as possible, we specialise

the handling of non-strict function types. This handling is based on the

observation that to evaluate a thunk some code must be called, and to apply

a function some code must be called. Therefore a suspended function value

can be represented in the same way as a non-suspended one, just the code

reference needs to refer to code to evaluate the function value and then apply

it rather than to just apply it.

The specialisation is performed through standard subclassing of the function

types defined in Section 5.3 as shown in Figure 6.5. In this way we are able

to streamline the invocation of all functions, whether the function reference

represents a thunk or an actual value.

6.5 Performing Non-Strict Evaluation

Now that we have mechanisms in place to support non-strictness we need

to generate code that will be non-strict. Existing compilers for non-strict

57

languages obviously already handle this process and the algorithms are well-

known. The only change required is the relatively mechanical one of pro-

ducing code for the OOVM platform with non-strictness rather than for a

conventional architecture. We outline the process here.

There are three steps in this process. The first step is to determine which

expressions should not be evaluated immediately, this is achieved through

the use of a standard strictness analysis algorithm [42]. Following strictness

analysis any expressions that should be delayed need to be converted into

code that builds thunks rather than code that will evaluate. This step is

performed through the simple mechanism of treating all expressions that

should be suspended as nullary lambda expressions, and then lifting them in

the manner described in Section 3.1. For example the function

foo f g x y = f (g x) (g y)

Will be transformed into the following set of functions after strictness analysis

and lifting (in which ‘∧’ indicates a suspension)

generated1 {g , x} = g x

generated2 {g , y} = g y

foo f g x y = f ∧generated1 {g , x} ∧generated2 {g , y}

Once the expressions to be suspended have been lifted, they will have been re-

placed by references to the functions generated during the lifting process and

references to the free types and variables they require to evaluate correctly.

To create the correct thunk all that is now required is to create an instance of

the lifted function, supplying the appropriate environment parameters (as for

any lambda expression). The lambda instance is then passed as the function

for the target type’s thunk constructor. So the final generated imperative

code for the above example will be akin to (for the sake of simplicity we

assume all x and y are Ints):

class generated1 : Function<Int>

{

Function<Int , Int> g ;

Int x ;

generated1 (Function<Int , Int> g , Int x) { . . . }

58

Figure 6.6: IThunkable interface used to allow non-strict construction of type
parameters.

Int invoke () { return g . invoke (x) ; }

}

class generated2 : Function<Int> { . . . }

Int foo (Function<Int , Int , Int> f ,

Function<Int , Int> g , Int x , Int y)

{

return f . invoke (new IntThunk (new generated1 (g , x)) ,

new IntThunk (new generated2 (g , y))) ;

}

The only element of non-strict evaluation remaining is the suspension of ex-

pressions returning type parameters. In this case it is not known the exact

name of the thunk class that must be instantiated, as the type that will be

substituted for the type parameter is unknown. To allow non-strict evalua-

tion of parametric types we there use the OO standard approach of requiring

the type parameter to implement a well known interface. The interface con-

tains a single method which parallels the types constructor method (see Fig-

ure 6.6). This mechanism has a potentially significant performance impact

as calling an interface method requires an instance of the type to be made,

and so every thunk created may require both a virtual call and an additional

object construction. There are a number of mechanisms that may be able

to reduce this cost however they are heavily tied to specific implementation

details, and therefore we will not discuss them.

59

60

Chapter VII

Higher Kinded Types

This chapter introduces the concept of higher kinded types. Section 7.1

describes what higher kinded types are and why they are useful. This will be

followed by a description of the mechanisms we have developed to allow code

using higher kinded types to be compiled to a virtual machine without native

support in (Section 7.2). Finally, Section 7.3 will discuss the shortcomings

of our approach.

7.1 Background

We first introduced higher kinded types in Section 4.1.4 as an extension to

simple type parameters that allows type parameters to be functions over

types [55].

In our work we have not attempted to support general higher-kinded type

variables, but instead limit ourselves to provide support sufficient to support

Haskell. In Haskell higher-kinded type variables are limited to being first

order functions; this is exactly the same as type constructors in Haskell which

cannot themselves take higher-kinded type arguments. We are not aware of

any language in common use which supports more general higher-kinds so

restricting ourselves to support Haskell is not a real limitation.

As we are limiting ourselves to supporting Haskell we will use examples from

that language. Higher kinded type variables are introduced in two situations

in Haskell: as parameters to functions; and as parameters to type classes.

The primary use is in type classes, in particular in the standard Monad class.

7.1.1 Higher-kinded type variables in functions

The following is a use of a higher-kinded type variable in a Haskell function:

61

aId : : f a −> f a

aId x = x

The above defines the identity function, but only over parametric algebraic

types of one argument. This is clearly rather trivial! The following is a

function over unknown type constructor, f , that takes an input structure of

type f of Int and returns an f of Real :

conver t : : (f Int −> Int) −> (Real −> f Real) −> f Int −> f Real

convert g1 g2 x = g2 (fromIntegral (g1 x))

In this case convert can operate over List, Tree, or any other type with a

single type parameter; provided the required injection/extraction functions

are available of course.

What should be clear is that higher-kinded type variables share the same

restriction as standard type variables – a function has no knowledge of the

type structure and so can perform only limited operations over the type. This

means that using just functions it is difficult to implement complex functions

using higher kinded types. Which brings us to higher-kinded type classes.

7.1.2 Higher-kinded type variables in type classes

Consider the function map, which can apply a function to each element in a

list to produce a new list of transformed values

map : : (a −> b) −> [a] −> [b]

map [] = []

map f (x : xs) = (f x) : (map f xs)

Clearly a similar function could be defined which applies a function to each

element of, say, a tree or indeed any ‘container’ type. Each particular function

will know the structure of type it operates over, you cannot write such a

function without that knowledge!

Type classes (described in Section 4.1.3) allow a type parameter to be con-

strained to types which provide a given set of functions. However you cannot

62

define a type class which specifies a function over constructed types, such as

map above. Higher-kinded type classes address this.

For example, Haskell defines a Functor class that provides an fmap function

that is intended to provide maplike behaviour over many different types:

class Functor f where

fmap : : (a −> b) −> f a −> f b

The key point about using a higher-kinded type class is that any instance will

know the structure of what it is operating over. For example when defining

an instance of Functor f will be bound to an appropriate type constructor,

so the instance will be able to manipulate the data itself. For example:

instance Functor List where

fmap = map

As with ordinary type classes, while each individual implementation of fmap

is not able to work over every type, it can be used in a generic manner, as

in these functions to scale a set of values:

s c a l e : : [a] −> a −> [a]

s c a l e elems f a c t o r = map (f a c t o r ∗) elems

f s c a l e : : Functor f => f a −> a −> f a

f s c a l e elems f a c t o r = fmap (f a c t o r ∗) elems

The first example shows an implementation of a function that scales each

element in a list. The second function, fscale, uses a higher kinded type (the

type parameter f) and fmap to define a function that can scale lists, trees, or

any other type that has an associated instance of Functor. So we can see that

by using higher kinded types (especially in conjunction with type classes) a

function can be given a much greater level of abstraction, thus removing the

developer’s burden of repeatedly implementing almost identical code.

OO languages would typically use inclusion polymorphism to achieve the goal

of higher kinded types, and for this reason do not have higher kinded types.

For this reason OOVMs frequently do not provide support for higher-kinded

63

type parameters and thus we need to develop mechanisms that allow the

semantics of higher kinded types to be supported.

7.2 Solution

In this section we present the system that we have developed to allow higher

kinded types to be supported on an OOVM. Section 7.2.1 looks at type

erasure and why it does not work in this case. Section 7.2.2 describes a

mechanism that generates correct type information. Finally, Section 7.2.2

discusses what steps are necessary to allow higher kinds to be used safely

within the context of classes and instances.

7.2.1 Type Erasure

We have previously discussed type erasure as the worst-case, but work-

able, solution to supporting type systems which cannot be mapped onto the

OOVMs type system. Erasing all types is undesirable, however it is possible

to erase the types of just higher-kinded type variables, an approach we shall

refer to as ‘partial type erasure’. However in the case of higher-kinds erasure

has further limitations which make it unacceptable.

For example, a function g :: ∀ f . f Integer → [f Integer], would become

g :: Object → [Object], following type erasure. This function will not be

type safe, regardless of what type is bound, for example, g [1] should return

a [[Integer]], yet the erased result will be [Object]. For this to work on an

OOVM its type system must allow [Object] to be convertible to [[Integer]],

but this type of covariance is not supported by any of the current OOVMs

as it is not type safe (notably both the CLI and the JVM allow this form

of covariance for array types by using dynamic type checks to enforce type

safety). Without this conversion the list of Object would need to be copied

an element at a time, converting each one – a conversion which is valid and

would succeed. Such copying would be unacceptable.

Attempts to erase even more type information result in similar problems.

64

So though type erasure might be made to function, the cost would be pro-

hibitively high.

7.2.2 Explicit Instantiation Types

In this section we will introduce the mechanisms and algorithms that support

higher kinded types with a significant level of static type safety. We will

divide our discussion into separate sections which discuss the basic steps

required for the transformation and the specialisations required for classes

and instances.

Basic Algorithm

Section 7.2.1 demonstrated that it is not possible to erase to object, as the

resultant type requires an invalid type conversion. Our algorithm solves this

problem through the addition of “explicit instantiation types”. The basic

approach is: while the OOVM type system does not allow an open type;

the OOVM equivalent of a type constructor; to be used as a type parameter

it does allow a closed type; the equivalent of an applied type constructor.

We therefore transform declarations using higher-kinded type variables so

that instead of passing a higher-kinded type variable which is subsequently

applied to a type (either constant or another type variable) we ‘lift’ out each

such application and pass it as an additional type parameter. The type

applications are then performed at the point of instantiation and only closed

types are passed – so the instantiation is ‘explicit’, giving us our name.

The pseudo-code for the basic algorithm to perform these transformations is

given in Figure 7.1.

Applying our algorithm to the earlier fmap example:

∀ f a b . (Functor f) => (a → b) → f a → f b

results in the replacement type:

∀ fa fb a b . (Functor) => (a → b) → fa → fb

65

makeExpl ic i t d e f i n i t i o n
expr = expre s s i on o f d e f i n i t i o n
s i g = s i gna tu r e o f d e f i n i t i o n
typeparams = type parameters o f defn

foreach hk in
(higher−kinded type va r i ab l e a pp l i c a t i o n s in s i g)

tv = new type va r i ab l e name
s i g = s i g r ep l a c i ng hk with tv
expr = expr r ep l a c i ng hk with tv
typeparams = typeparams ∪ tv

foreach hk in
(higher−kinded type va r i ab l e a pp l i c a t i o n s in expr)

tv = new type va r i ab l e name
expr = expr r ep l a c i ng hk with tv
typeparams = typeparams ∪ tv

foreach hk in
(higher−kinded type va r i ab l e appear ing a lone in
s i g or expr)

s i g or expr = s i g or expr with hk e l i d e d when a lone

return (typeparams , s ig , expr)

Figure 7.1: Basic algorithm to convert from higher kinded types to explicit
instantiations.

66

Note the eliding of f from Functor. This is required as applications (f a)

and (f b) cannot be lifted to Functor as a and b are only local to fmap. This

causes the loss of static type checking and casts are inserted into Functor

instances to assert that a correct instance has been passed. This is covered

below.

Type Classes and Instances

As discussed in Section 5.2 type classes and instances are processed differently

from other types, the result of which is that higher kinds also need to be

processed slightly differently.

In the standard model for converting a class (described in Section 5.2) the

type parameter of the type class becomes a type parameter of the generated

OOVM class. When the type parameter is a higher kinded type this isn’t

possible, and it must therefore be removed. The function signatures for each

method in the type class are then restructured as described above (shown in

Figure 7.2).

Higher-kinded instances however require slightly different handling, which

mirrors the handling of other instances. Recall (4.1.3) that when defining

a polymorphic function the details of the actual type which will applied in

an application are not available and the definition of the function is type-

agnostic. Type classes enable the types that may be supplied to be con-

strained to provide certain functions, and then the function definition may

use those functions on instances of the type parameters. However, when an

instance is created the function supplied is specific to the type the instance is

being defined for and those specific types. In non-higher-kinded type classes

the required type information is preserved as type parameters to the OOVM

classes, and so the instances can operate on the actual types (5.2).

Due to our need to remove higher-kinded type variables the situation is

slightly more complicated for higher-kinded type classes. For example, con-

sider:

class Countable s where

Count : : s a −> Integer

67

sum : : [a] −> Integer

instance Countable List where

Count = sum

Applying the above algorithm for higher-kinded type removal to Total pro-

duces the signature:

∀ sa a.(Countable) => sa → Integer

In our example in the instance definition a will be substituted by Integer,

just as for non-higher-kinded classes (5.2). However a cast is required to

recover the type of sa as [a] before it can be passed to sum. The OOVM

code produced for the instance must therefore contain the fragment:

... sum((List<a> arg) ...

Depending on the instance being compiled this fragment is either included

inline or a type casting wrapper function is produced which performs the any

required casts on the arguments and return values, and this wrapper function

is used as the function in the instance.

The algorithm for inserting the casts is a simple development of the one in

Figure 7.1; when types are replaced casts are inserted. Figure 7.2 shows the

result of applying this algorithm to the above Functor type class and the

instance for Functor List.

7.3 Problems

The algorithm lacks the ability to produce code that can be statically verified

by current OOVMs. Assuming the original source is itself type-safe, as it is

in this situation, the generated code will be correct. However runtime type

casts are required to meet the requirements of current OOVM type systems,

and even though they will all succeed they do carry a cost. Despite this

68

Figure 7.2: The generated structure the Functor class and Functor List in-
stance.

shortcoming our approach is a significant improvement over complete type

erasure, as it retains complete static type safety when higher kinds are not

used. Unlike partial type erasure it produces completely correct code without

resorting to copying.

The other disadvantage of the algorithm we have developed is that it has the

potential to cause a combinatorial explosion in the number of type arguments

required for otherwise simple methods. While this is not strictly a disadvan-

tage from the point of view of the source language, it represents a significant

difficulty when attempting to access a method with higher kinded type pa-

rameters from other languages. The issue is compounded further by having

constraints that cannot be statically enforced, eg. where ∀ f a . a → f a

becomes ∀ fa a . a → fa the connection between f , a, and fa cannot be en-

forced.

69

70

Chapter VIII

Higher Ranked Types

In this chapter we will be discussing higher ranked types. An introduction to

higher ranked types and their uses is given in Section 8.1. This introduction is

followed by a discussion of the methods we have developed to support higher

ranked types on an OOVM (Section 8.2). Finally Section 8.3 discusses the

problems we have found in this approach.

8.1 What are higher ranked types?

As discussed in Section 4.1.4 higher ranked types are an addition to the

higher order types provided by many functional languages that allow un-

bound polymorphic methods to be treated as values [55]. While this feature

is not frequently required, if it is needed it is often not possible to do with-

out [48]. To illustrate the purpose of higher ranked types we will use this

trivial function:

f g = (g [0 , 1 , 2] , g [True , False])

The function f attempts to apply g to a List of Integers and also to a List of

Bool, however without higher ranked types g can only operate over a single

type. If we wished to apply the function reverse to each list g must have

the type ∀a . List a → List a, however traditional higher ordered types would

not allow this. Instead a type would need to be bound to reverse prior to

it being passed to the function f , immediately removing any possibility of

polymorphism. This is known as the monomorphism restriction. By allowing

higher ranked types this problem is removed as it is not necessary to bind

any types to the reverse function, thus g can be bound locally.

As with higher kinded types this is not a feature that is prevalent in OO

languages, and therefore it is not actively supported by OOVMs. For this

71

reason it has been necessary for us to develop a mechanism that supports

the semantics of higher ranked types. It is this mechanism that we will be

discussing in this section.

8.2 Solution

While the mechanism we have developed to support higher ranked types is

conceptually simple, there are a a number of aspects that require special at-

tention. For this reason Section 8.2.1 will first introduce the basic technique,

followed by a discussion of the steps required to be able to safely use higher

ranked types across multiple libraries (in Section 8.2.2).

8.2.1 Basic solution

In our earlier discussion of higher order types in Section 5.3 we introduced a

family of parametric types to represent function values, Function < A1, ..., An, R >

for the function types A1 → ... → An → R. Using these the Haskell function:

f : : a −> (a −> b) −> b

is transformed to the OOVM method:

B f<A, B>(A a1 , Function<A, B> a2) { . . . }

where Function follows the template:

class Function<A1 , . . . , An , R>

{

R invoke (A1 a1 , . . . , An an) { . . . }

}

and ‘class’ may in practice be an interface or abstract class.

Our transformation is based on the observation that though an instance

of an OOVM parametric type must be closed when passed as parameter,

that type may contain parametric methods and these are open. Using this

we may relocate the type parameters from Function to invoke to support

higher-ranked types. For example, consider the Haskell function:

72

f : : a −> b −> (f o r a l l c . c −> c) −> (a , b)

f x y g = (g x , g y)

This can be transformed to the OOVM method (assuming the tuple type

(a, b) is transformed to Pair < A, B >):

Pair<A, B> f<A, B>(A a1 , B, a2 , FunctionCC a3)

{

. . . a3 . invoke<A>(a1) . . .

}

where FunctionCC follows the template:

class FunctionCC { C invoke<C>(C a1) . . . }

Despite the relative simplicity of the concept, there are a number of complex-

ities that must be handled. The first of these is that a parameter may contain

both local and globally quantified type variables. For example consider the

Haskell function:

f : : a −> b −> (f o r a l l c . c −> d) −> (d , d)

f x y g = (g x , g y)

Such cases combine higher-order and higher-rank and the obvious transforma-

tion is to combine the transforms for these two; globally quantified variables

being placed on Function and locally quantified ones on invoke. Applying

this transform to the above example produces:

Pair<D, D> f<A,B,D>(A a1 , B, a2 , FunctionC<D> a3) { . . . }

and:

class FunctionC<D>

{

D invoke<C>(C a1){ . . . }

}

73

The next complexity should now be apparent, how should the Function

types be named? For higher ordered types we predefined a number of generic

Function classes (see Section 5.3). Such a simple solution is not possible in

the case of higher ranked types, since an arbitrary combination of local and

globally quantified type parameters could be present.

Our solution to this is to generate an interface or abstract class for each

unique higher ranked type encountered while compiling a program. This

allows a program to use any combination of higher ranked types, and does

not rely on any infeasibly large collection of parameterised function types.

While this approach does not require any specific naming convention for these

thunk types, we have found that, for reasons discussed in Section 8.2.2, it is

useful to produce names derived from the type itself.

8.2.2 Supporting Multiple Libraries

The ability to create independent libraries of functions that can be compiled

and distributed separately from those systems that use them is a clear boon

to the programmer. In this section we shall discuss the features required to

allow the use of higher ranked types across multiple independently compiled

libraries. First we discuss how to ensure type safety and consistency when

passing higher ranked types from one library to another, then we discuss how

to ensure that any higher ranked types returned from a separate library can

be handled correctly and efficiently.

Higher Ranked Types as Parameters

As stated in Section 8.2.1, it is not possible to pre-generate generic higher

ranked type classes in advance. We must therefore generate them at compile

time. This means that each library that uses higher ranked types will have

its own types to represent each higher ranked type that it uses. This creates a

significant problem when higher ranked types are passed from one library to

another. Since the CLI (and many other OOVMs) does not allow structural

equivalence of types, the classes defined for higher ranked types in separately

compiled libraries cannot be treated interchangeably. An instance of a higher

74

Figure 8.1: We can see in this example that the HigherRanked1 class of
module B is not substitutable for that of module A, so higher ranked types
generated in module B will not be usable in module A.

ranked type can therefore not be passed trivially from one library as an

argument to a function in another. An example of such a situation is given

in Figure 8.1.

To address this for any type T introduced to represent a higher-ranked type

that must be passed to an external library as type S we make T implement

S; as shown in Figure 8.2. To make the process of creating and discovering

the names of introduced types easier, we construct the names based on the

module they are in and their usage.

As a higher-ranked parameter may be passed to functions from multiple li-

braries, the introduced type itself may have to subclass multiple types. This

is why we cannot simply name T as S. Further given that most mainstream

OOVM’s, including the CLI, restrict multiple inheritance to interfaces, the

introduced type must be an interface and not an abstract type. This require-

ment does place certain restrictions on where higher ranked types can be

used, since an interface cannot force an implementing type to have a default

constructor; a constraint required to allow non-strict evaluation in certain

cases, as discussed in Section 6.5.

75

Figure 8.2: By making the higher ranked class for module B a subclass of the
equivalent class in module A, higher ranked references from both modules
can be passed to functions in module A.

Returning Higher Ranked Types

So far we have described techniques which allow us to pass higher ranked

types from one library to another with complete, statically verifiable, type

safety. However we must also handle the return of higher ranked types from

functions in other libraries. This problem is more difficult to solve than that

of passing higher ranked types as arguments. When generating a type, T ,

to represent a given higher-ranked parameter it is easy to determine all the

uses of that parameter and hence all the types Si that T must implement, as

described above. However when the higher-ranked type occurs as the return

type of a function it is not possible to determined all the places that function

may be called, and hence the set of types that are used in all those calling

locations to represent the higher ranked type. Therefore when transforming

a call to a function which returns a higher rank type with introduced name

T in a context where the higher rank type has been called S a conversion

from T to S needs to be performed. This issues stems from OOVMs using

name rather than structural equivalence for types.

76

The most simple solution to this problem is to introduce wrapper classes

which perform the required type conversion to encapsulate any higher ranked

type that is returned from another library.

For example, using C# on the CLI as our target platform, the following

example shows such a wrapper class. First the definition for the locally

introduced type to represent ∀a, b.a → b which has been given the name

GeneratedNameOne:

interface GeneratedNameOne { B invoke<A, B>(A a1) { . . . } }

Now assume we need to call the library method Widget which returns a

value of type ∀a, b.a → b which in this case has been given the name

AcmeGeneratedName, in the library this will look something like:

interface AcmeGeneratedName { B invoke<A, B>(A a1) { . . . } }

public AcmeGeneratedName Widget (. . .)

Back in our calling location we introduce a wrapper class to ‘convert’ a

AcmeGeneratedName to a GeneratedNameOne:

class AcmeWrapper : GeneratedNameOne

{

private AcmeGeneratedName widgetResult ;

public AcmeWrapper (AcmeGeneratedName r e s u l t)

{

widgetResult = r e s u l t ;

}

public B invoke<A, B>(A a1)

{

return widgetResult . invoke<A,B>(a1) ;

}

}

Finally we wrap the call to Widget:

77

GeneratedNameOne r e t = new AcmeWrapper (Widget (. . .)) ;

While simple, there are a number of issues with this approach, not least of

which is its lack of elegance. A more fundamental concern is the potential

for significant overhead, especially if a single higher ranked instance is passed

repeatedly through multiple modules. In such a case there would be a signif-

icant overhead from creating each wrapper. Every wrapper place around a

higher ranked typed requires another level of indirection, so that even if no

further wrappers are applied, every subsequent call to the function will be

more expensive than a standard call.

While we have been unable to develop a mechanism that will allow us to

completely remove all uses of wrapper classes, we have developed an algo-

rithm that allows us to safely use higher ranked types returned from other

functions without necessarily requiring a wrapper. Our approach requires

simple analysis of any uses of higher ranked types that are returned from

other libraries. There are three cases to consider; namely where the returned

higher ranked type is

returned from the current function: In this case we would ideally make

the function return the appropriate type for the library to which the

call was made. Unfortunately this would complicate any attempts to

use the function from other modules, since it would effectively violate

the encapsulation of the module. Such a violation could result in future

changes to the implementation of the function changing its return type.

Since this would require recompilation of all dependant libraries and

programs the only sensible option is to build a wrapper around the

returned value, thus ensuring that the return type remains consistent

with the current library or program.

passed as a parameter to another function: The case is more flexible.

By definition the type passed to a function must be either the type

expected or a subtype of the type expected. In the event that the

return value comes from the same library as the function it is passed

to, or the called function is part of the code currently being compiled,

78

the delegate type will be correct and can be passed safely. In any other

case more careful consideration is required to ensure that all generated

code will be valid.

While it would technically be possible to examine the type of the re-

turned value statically and determine whether it implements the ap-

propriate interface (and would thus not require a wrapper), this would

lead to the same violation of encapsulation mentioned above and is

therefore not useable. This leaves two possibilities, either applying a

wrapper class on every call, or using a dynamic type check to deter-

mine whether a wrapper is necessary at runtime. The first option is

much simpler and results in completely statically verifiable code, but

may wrap instances that would not need to be wrapped. The second

option does not have that shortcoming, but is not statically verifiable

and the performance impact of the dynamic check may outweigh any

benefits of reducing the number of wrapped functions.

assigned to a local variable: This case is the most complex, since there

are many ways in which the variable can be used; and it can be used

multiple times. The first stage in the processing of this case is to find

every use of the variable that has been assigned to and determine the

expected type at each of these places. When determining the expected

type of a use of a variable we must apply the rules described above.

If the variable is ever returned as the result of the current function,

it is expected to be the appropriate introduced type for the current

library. When passed as a parameter to another library it is expected

to be a subclass of the introduced type for that library. If every use

of the variable expects the same type as the value originally assigned,

the type given to the variable should match the introduced type of the

source library. If the expected types include types other than that of

the source, itself more care must be taken. The most trivial case is

to declare the variable to be of the correct type for the current library

and create a wrapper around the returned value. Needless to say, such

an approach could be unnecessarily inefficient, especially if some of the

uses were expecting the exact type of the returned value. Therefore

79

if any of the uses of the variable expect its actual type, a reference

should be created to its original unwrapped value and the appropriate

uses should be replace with references to the temporary store.

In this final case there are a significant number of tradeoffs to be made.

Should the value be wrapped immediately or should it be wrapped at

the site of each use? Should we use the dynamic checks mentioned

above to see if a wrapper is even necessary? These decisions are diffi-

cult, since the most efficient choice may depend on how the function

being compiled will be used, or how it is implemented. If the return

value is wrapped too early, it is possible it may not be used, so time

was wasted creating the wrapper. However if the wrapper is applied

late (eg. wrapping at each use), then it may be unnecessarily wrapped

multiple times. Moreover, these factors may be influenced externally

by factors such as the way objects are created or dynamic type checks

are made, either of which could influence the overall efficiency of the

generated code.

8.3 Problems

While the techniques we have discussed in this section have resolved some

of the difficulties of providing support for higher ranked types, of these a

number of problems remain to be solved. The first of these is the potential

for these techniques to generate a vast number of interfaces; one for each

unique higher ranked type. While this is an unavoidable problem, every

distinct type that exists has an overhead on many OOVMs, including the

CLI, and excessive interface generation may therefore prove a burden on the

target virtual machine.

The major shortcoming of this solution, however, is the high overhead from

the wrapping of higher ranked values as they are passed from one library to

another. This overhead manifests itself in three ways. The first is the obvious

cost associated with instantiating the wrapper object and the second is the

increased memory usage required for each wrapper instance. Thirdly the

last of the wrapper related problems is the increased levels of indirection in

80

subsequent calls to a wrapped delegate.

Finally, there is the constraints problem referred to in Section 8.2.2. In

order to allow higher ranked types to be used across multiple libraries the

introduced types must be declared as interfaces. However, as interfaces they

cannot provide default constructors. As stated in Section 6.5, the CLI offers

no mechanisms to define virtual static functions, so a generated interface

cannot provide a static function to create a thunk. Therefore creating a non-

strict thunk for a parameterised type requires creation of an instance of that

type, a feat that can only be accomplished through the use of the default

constructor constraint. As higher ranked types are interfaces and cannot

have a default constructor, they cannot be provided as type parameters to

any function that would attempt to create a non-strict thunk. This is an

unavoidable problem of our current solution.

All of these problems are caused by the lack of any form of structural equiv-

alence in the CLI and similar OOVMs. If support for structural equivalence

were provided by the VM, all of these problems could be resolved trivially,

since it would no longer be necessary to use any form of wrapping to pass

higher ranked types between different libraries. The removal of the need for

wrapper instances would allow classes to be used in place of interfaces, thus

allowing a default constructor to be present and allowing higher ranked types

be be safely used as type parameters.

81

82

Chapter IX

Experimental Compiler

In this chapter we document the construction of a compiler for the Haskell

functional programming language that targets the CLI. We have used this

compiler as a platform to demonstrate that the techniques we have presented

in this thesis work, and are efficient enough to be considered practical.

The first section in this chapter will discuss the design decisions made during

during the development of this compiler. Section 9.3 follows with a descrip-

tion of the compiler architecture and descriptions of what each part of the

compiler does. Section 9.4 provides a brief discussion of the performance of

our compiler. Finally, Section 9.5 summarises this chapter.

9.1 Design Decisions

When developing the compiler a number of designs decisions were made for

both practical and aesthetic reasons. In this section we explains what these

decisions were and why they were made.

The first implementation-centric decision we made was to use another Haskell

compiler as the basis for our own. The reasoning for this was twofold. First

by using another compiler as the base we immediately gain all of the optimi-

sations it implements for free. The second reason is that doing so removes the

burden of implementing a complete type inference engine. As both of these

features have been thoroughly covered in other papers [42, 45, 28, 65, 66]

there would be little gain in implementing either feature ourselves.

This decision lead to the question ‘what compiler do we use as our base?’.

While a number of Haskell compilers exist, the Glasgow Haskell Compiler

83

(GHC) stood out as having the best library support, a very powerful opti-

miser, and, importantly, it provides an external representation of it interme-

diate language; Core [62]. The external Core output from GHC is produced

after GHC’s type inference and optimisation stages, and therefore allows us

to avoid implementing either of these phases.

Having decided on what the compiler would use as its initial code source,

we needed to choose what the target language would be. As the compilers

final target is to be the CLI, there are two options; the CLI intermediate lan-

guage, CIL, or some other higher level language with its own compilers that

target the CLI. By targeting CIL the compiler has much greater flexibility in

what it can do, and it can have guaranteed access to all of the features the

CLI provides. However, this comes at the cost of much greater complexity

when generating code. Alternatively if the compiler targets a higher level

language, code generation is much simpler and we gain any optimisations

the higher level language compiler provides. Unfortunately this means that

if the compiler for the target language does not support some feature of the

CLI our compiler also does not have access to it.

Due to time constraints we chose to target a higher level language. In this

case the C# language was the obvious choice as it is a defined standard and

it supports every feature of the CLI that we require. There are a number

of trade offs in this choice, most notably the CLI C# compiler does not

currently generate the tail call [5] instructions supported by the CLI. This

leads to potential overflowing of the program stack during deep recursion and

we will discuss (in Section 9.3.3) one attempt to mitigate this problem.

9.2 Type Generation

Generation of all algebraic types, type classes, and instances is performed

almost exactly as described in earlier chapters. We have used specific fea-

tures of the CLI in an attempt to maximise possibility of VM optimisations

occurring, and to aid interoperability with other languages on the CLI.

The most basic of these was restructuring the code generated for algebraic

types. Rather than having the constructor and thunk subtypes contained

84

globally, they are defined as inner classes of the class defining the algebraic

type. We can then seal the class preventing any other (unsafe) subtypes from

being created. We also use the CLI’s reference constraint on type parameters

wherever possible as this has the potential to allow the VM to better handle

many instances of a polymorphic method.

If a global function is ever used as a parameter (rather than being called) a

wrapper class is created for it, however rather than creating a new instance of

the wrapper for each use, a single static instance is defined as a member of the

wrapper. This approach matches the Singleton pattern [13] and thus allows

a single wrapper to be used for multiple references to the same function.

In addition to these minor optimisations a number of idiosyncrasies of the

Core output of GHC result in partial application of class type constructors.

This requires the addition of an explicit implementation of the type class

constructor that in effect matches the structure of a standard algebraic type

constructor.

9.3 Architecture

We have used a simple pipeline model for our experimental compiler, in the

module being compiled is passed through a pipeline of operations. Each

operation, or stage, of the pipeline performs a specific task, the result of

which is then passed to the next stage. The following sections describe in

detail what each task does, and, in more complex cases, how that goal is

achieved.

9.3.1 Stage 1: Initial Processing

The first stage in the compilation pipeline is the parsing of the input Core

files into useable syntax trees. This stage is completely standard and so we

will not discuss it in any significant detail. Following the initial parse we

encounter actual transform stages, the first of which are the Core Name and

Function Type filters.

85

The purpose of the Core Name filter is to convert type variable names into

names that are guaranteed to be safe, to partially decode the z-coded iden-

tifiers in native Core, and to rename certain standard identifiers to be more

human friendly. Modifications to the type arguments are made to ensure

that there are no name clashes between value and type variables, since the

CLI cannot distinguish between identically named type and value variables.

The remaining name changes merely ease human comprehension of output

code.

The Function Type filter is a filter that converts implicit function types in

Core to explicit ones. This is needed since certain versions of GHC producing

function types as applications of types to a function type, GHC.Prim.→,

rather than using Core’s build in function type construct; eg. GHC.Prim.→

Int (GHC.Prim.→ Int Int) instead of Int → Int → Int. This filter simplifies

later stages that would otherwise have to check for multiple type definitions

with the same meaning.

After these filters have modified the Core syntax tree, it can be safely con-

verted to a more useful structure that isn’t as tightly coupled to the under-

lying Core syntax.

9.3.2 Stage 2: Converting to a Typed Structure

At this point the compiler has a version of the Core syntax tree of the current

module that is safe to process. The next step is to load the root symbol

information from this module – that is, the list of all function, type and

constructor names listed in the module. This information is then inserted

into a symbol table, along with links to the data required to fully evaluate

the function as well as data types where a complete definition is needed (this

is a case where language level non-strict evaluation would have been useful).

Once all the symbols in the module have been loaded, the next stage converts

the Core body of a function into a useable typed structure. This produces a

new tree, which is structurally equivalent to the original Core tree, but has

been saturated with useable Type information (and the appropriate symbol

table references). At this point the Reference Function filter converts alias

86

functions to actual function applications, eg. the function foo = (+) be-

comes foo arg0 arg1 = (+) arg0 arg1. This new tree is still not all that

different from the original Core syntax tree, except its structure is no longer

confined to the Core syntax and it has recorded all function applications as

being unchecked. We will discuss why this is important in the next section.

9.3.3 Stage 3: Transformations

The compiler has not really accomplished much at this point. It has a symbol

table containing a whole lot of type information, and function bodies are

now stored in a typed tree structure, but all of these are still equivalent

to the original Core tree. Next the compiler starts actually modifying the

functions bodies to prepare them for compilation. It does this by running

a series of transformations over the body of every function in the module.

These transformations are grouped into a number of phases, the first of these

consists of a number of basic transformations that merely simplify certain

structures in the tree. The second phase covers a number of tasks, focusing

on the different aspects of function evaluation. Phase three follows with a

series of filters to perform any required expression lifting. Finally, phase four

performs target specific transformations.

A number of the transformations in this phase generate new functions. To

ensure correct compilation these newly created functions are added to the

queue of functions that this stage has to process, and thus are themselves

eventually correctly transformed.

Phase 1: Initial Simplification

This phase consists of a number of simplification transforms. The underlying

goal of these transforms is to remove superfluous information from the tree.

This information may be a trivial local definition of the form a = b, or the

calling of a constructor for a primitive type and a number of other artifacts

of the Core semantics.

• The Simplify Literals transformation removes constructor calls from

87

any literal values. By doing this we avoid the need to generate wrappers

for strict literal values, since literals can now be trivially emitted.

• The Simplify Select transformation simplifies the scrutinee (the value

being examined) of the select statement, by lifting any scrutinee that

is not a variable reference. By lifting any non-trivial scutinee out of

the select statement we remove the burden of validating the scutinee

from the code generator.

• The Dictionary Select Removal transform is the first transform that has

a significant impact on the underlying expression structure. This trans-

form identifies select expressions that are used to access the functions

in dictionary types (see Section 4.1.3). Once one is found it replaces

all subsequent references to the extracted fields with explicit dictionary

select nodes. By doing this we have now explicitly marked calls to the

functions from a type class.

• The Simple Let Removal transformation is a very basic process that

removes trivial local definitions of the form a = b, replacing subsequent

references to a with b. Its other task is to find any local definition that

produces a variable that is used only once, and remove it by inlining

the expression.

The final step of the this phase is the inlining of nullary functions. Unlike

other transforms that operate on individual expressions the transform for

inlining nullary transforms operates over every function in a module. This

transforms finds all trivial nullary functions – functions that take no argu-

ments – and inlines them wherever they are used. This reduces the impact

of elements such as literal values being referenced through function calls.

Phase 2: Code Validation

Once the initial code tidying has been completed, the compiler moves on

to code validation. In this phase a number of transforms process the tree

88

to ensure that correct Haskell semantics are enforced, and to ensure correct

typing of expressions.

• Partial Application Identification is the first step of code validation. As

we are using the eval-apply model of function evaluation it is necessary

to ensure all function applications are correct prior to code genera-

tion. For this reason we use this transform to ensure that all function

evaluations are correct. As noted in Section 9.3.2, all of the function

applications currently in the expression tree have been recorded as be-

ing unchecked. By doing this we have allowed the transform to process

the tree and validate or repair any function evaluations.

Any given application may have either the correct number of param-

eters, too many, or too few. If the correct number of parameters are

given, we merely mark the expression as being a ordinary function ap-

plication. The case of too many parameters is processed by simply

creating a new application with the correct number of parameters and

performing an unchecked application of the remaining arguments to

the result. The transform is then applied recursively to the resultant

expression, thereby validating the new application. The single remain-

ing case is a partial application. This is processed by using a lambda

expression, as discussed in Section 3.2.

• Following the corrections of the function applications we use the Arity

Matching transform to ensure that all function references are of the

correct arity. This is necessitated by our use of the eval-apply model.

If the arity of a function reference is incorrect, it is fixed through the

use of a lambda expression, as described in Section 3.2.2.

• The Suspension Filter enforces the full non-strictness semantics of

Haskell by processing the tree and wrapping all expressions that should

be delayed inside special suspension nodes. By doing this we have pro-

duced all the information needed to correctly produce non-strict code.

89

Phase 3: Expression Lifting

This phase performs all the required lifting of lambda expressions and sus-

pensions. At the end we are left with a tree in which all lambda expressions

and artifacts of non-strict evaluation will be explicit.

• The Lambda Lifter exists merely to lift lambda expressions out of func-

tion bodies. To do this it uses the methods described in Section 3.1.

When lifting lambda expressions with free variables we attach an ex-

plicit environment to the resultant function, as described in Section 5.3.

• The Suspension Lifter continues the enforcement of Haskell’s non-

strictness semantics by lifting suspended expressions into separate func-

tions. This is achieved by wrapping the suspended expression inside

a lambda expression, and then calling the Lambda Lifter to lift the

generated lambda. Once that is complete, the resulting expression is

marked as being non-strict. This means that the code generator is able

to produce the correct thunk.

Phase 4: Target Specific Transformations

At this point we have performed a number of transformations to the original

tree, we have removed some superfluous information, and have made what

was once implicit information explicit. However even at this point the tree is

still largely as it was before and could almost trivially target any non-strict

functional language.

The next phase however ends any such ability, as it is here that we convert the

tree from its current expression oriented structure to the statement oriented

imperative structure we are targeting. Doing this requires only a few small

transformations we will discuss below.

• The Tagged Select transformation operates on select statements per-

forming a switch on type (Section 5.1). When such a structure is found,

the transform searches for uses of any of the deconstructed fields from

90

a constructor of that alternative. For each used field a local definition

with the appropriate name the new definition is assigned a special block

which indicates that a field selection needs to be inserted. By taking

this approach we have removed the need to copy every field (even those

that are unnecessary) out of a data type whenever a switch on type is

performed.

• The Statement Transformer is the final step in the transformation to

imperative code. Since we are targeting an imperative model we need

to modify the expression tree to use a statement based model. With

only a few exceptions, such as conditional expressions, value returning

constructs are limited to literals, variables, and function calls. This

means that many constructs currently in the expression tree, such as

local definitions and select statements, are not valid in value contexts;

eg. as function parameters. To correct this, the Statement Trans-

former adds special blocks representing sequential actions and lifts any

illegally placed expressions out of invalid contexts, and replaces them

with the appropriate expression. Due to the insertion of sequential ex-

pression blocks, the expression tree is no longer expression oriented and

has finally developed the structure suitable for an imperative virtual

machine.

• The Tail Call transformation is an optional optimisation step, intro-

duced to combat the problem of deep recursion. While the CLI does

support tail calls natively, the C# compilers do not currently emit the

required instructions. For this reason deeply recursive code that might

work in Haskell natively may fail to execute correctly on the CLI. To

reduce (but not remove) this problem, we have added the Tail Call

transform. This transform identifies simple, direct self-recursion and

replaces it with an iterative loop.

9.3.4 Stage 4: Final Compilation

We have now converted the original expression-oriented AST into an imper-

ative statement oriented tree with all lambda expressions and partial evalu-

91

ations made completely explicit. At this point we have to actually generate

the final code. To do this we generate a C# source file that can be passed

to a standard C# compiler.

The first stage in the code generation is production of the data types, for

which there are a number of different facets. For each new data type and type

class declared in the module we are compiling, we generate new classes using

exactly the form described in Sections 5.1 and 5.2. There are a few minor

implementation specific details (such as the use of the CLI’s sealed classes)

to ensure that the structures for these cannot be incorrectly subclassed or

otherwise cause harm to the integrity of the stored data. The only variation

is the removal of non-strict thunk types for any strict algebraic types.

Data type creation is followed by the generation of executable code. This

comes in two forms: functions and instances. Generation of function bod-

ies is a trivial conversion of the statement-oriented expression tree to C#.

An exception to this are functions with attached environments. These are

wrapped inside Function objects, as described in Section 5.3. In order to

improve efficiency of the output code we inline certain functions; such as the

functions for performing arithmetic on primitive types.

When generating the code for functions there is the possibility a function

will have no parameters, and will therefore always return the same value.

To produce a completely lazy executable it would be necessary to cache the

result of these functions upon their first use, thereby preventing a potentially

complex computation from being performed multiple times. Retaining these

values without creating space leaks has been an area of prior research by

others. Building on this we have utilised the CLI’s weak pointers for our

implementation.

Once code generation is complete the Haskell symbol table is emitted as an

attribute, allowing the compiled code to be referenced from other modules

easily. At this point the generated code is finally compiled by the standard

CLI C# compiler. If the module being compiled contains a Main module and

main function, the output is a executable for the CLI, otherwise a library is

produced (though the compiler can be forced to generate an library regardless

of whether it encounters a main method).

92

9.4 Performance

As the primary purpose of this compiler has been to test the algorithms and

techniques developed earlier we have performed only a rudimentary study of

the performance, our main metric during development has been ‘wall clock’

time – does the compiler and compiled code perform acceptably, which it

does – and not absolute performance.

Using a VM normally has some performance impact, but the extent of that

impact varies by VM and actual computation so merely comparing the per-

formance of our compiler to a native one would not necessarily produce mean-

ingful results.

In addition our compiler is built using one architected to target conventional

machines, and as commented elsewhere there are cases where its design would

not be the one chosen if the compiler has been built from scratch – something

outside of the scope of this project and also to a large extent would involve

applying standard compiler engineering.

Building performance test suites which isolated just the parts of the lan-

guage on which we worked proved difficult. It became obvious to us that

any detailed analysis would require a substantial amount of work and was

unfortunately something we did not have the time to do.

However we have performed a few simple tests of performance which show

our compiler is approximately half the speed of the native implementation

for simple programs, such as the following factorial function:

f a c t o r i a l : : Int −> Int

f a c t o r i a l n = i f n <= 0 then 1 else n ∗ (f a c t o r i a l (n−1))

main = putStr (show (f a c t o r i a l 20))

and a similar slowdown with the following fibonacci function which involves

the lazy construction and circular referencing:

f i b o n a c c i : : [Int]

f i b o n a c c i = 1 : 1 : zipWith (+) f i b o na c c i (t a i l f i b o n a c c i)

93

main = putStr (show (take 1000 f i b o na c c i))

As we increased the size of the list evaluated by the fibonacci function the

relative performance stayed relatively constant, this seems to imply that

the initial cost associated with VM startup has no significant impact on

overall performance. However we have no relative metrics for the native

GHC memory allocator/garbage collector (GC) and the one provided by the

VM, so it is possible that GC is contributing to the slowdown, although this

is unlikely to make up for a 50% slowdowm, which is worse than we had

hoped for.

9.5 Summary

In this chapter we have described the development of a compiler that supports

all the features of Haskell 98, as well as supporting the higher ranked type

extension offered by GHC. This has acted as a validation of the functionality

of many of the algorithms and techniques that we have developed. Our

compiler is able to compile very large and complex libraries (namely the

GHC base libraries) to native CLI libraries, and is able to subsequently use

those libraries in separately compiled programs.

Unfortunately due to time constraints we have been unable to completely im-

plement support for higher kinded types, and therefore are unable to demon-

strate complete functionality of the associated algorithms within our com-

piler. The approach we have taken is effectively that partial type erasure

(as discussed in Section 7.2.1). While this approach does not work in all cir-

cumstances, it provides enough functionality to give basic use of the Haskell

Monad and Functor classes.

While we expected the performance degradation when moving Haskell onto

the CLI to be more significant than that experienced by imperative lan-

guages, the difference was greater than we anticipated. There are a number

of possible causes for this

• While GHC performs a significant number of optimisations, some of

them produce structures and expressions that are not very amenable

94

to the techniques we have developed. The most damaging of these is

the partial application of a type class constructor; time constraints pre-

vented us from developing a suitable technique to handle this, and so we

have fallen back on the less efficient method of providing a constructor

class for type classes. This allows instances to be created dynamically

by wrapping a set of higher order types.

• The Core output from GHC does not directly support type classes or

instances and instead emits them following the transform described in

Section 5.2. In order to emit instances in the way described in Sec-

tion 5.2 our compiler must effectively reverse this transform. In most

cases this is trivial, however complex recursive instance definitions can

produce complex code that our compiler can have difficulty reconstruct-

ing from. In some cases the compiler may not be able to reconstruct

the instance as efficiently as possible, leading to poor performance of

the generated code.

• Finally, our comparison is against a commercial grade compiler, and we

do not have the same time and resources to expend on our compiler. As

a result it is quite possible that significant further optimisations could

be made to our compiler that would reduce the performance gap.

A number of steps could be taken to improve this situation, obviously the

final point could be remedied with further time and resources, however the

first two points are less trivial. Both are related to our use of GHC as a

front end. By using GHC we removed the burden of implementing the type

inference and optimisation stages of a Haskell compiler, however a number of

the transforms and optimisations are obviously not suitable for an OOVM. If

instead a compiler were built with the primary intent of targeting an OOVM

it may be able to make better decisions when transforming and optimising

code.

95

96

Chapter X

Future Work and Conclusion

10.1 Future Work

While our thesis has introduced a number of algorithms and techniques that

allow non-strict evaluation, higher kinded and higher ranked types on an

OOVM we have found a number of areas for further research.

10.1.1 Performance Improvements

As this thesis has focused primarily on what is needed in order to allow non-

strict functional languages to operate on statically typed virtual machines,

we have primarily examined data structures. Another field of considerable

importance is the performance of the resultant code. Section 9.4 showed that

in our experimental compiler there was a significant performance penalty

when converting from native application execution to execution on a virtual

machine. While some performance degradation is expected, the results in

our tests demonstrate that the degradation is much greater than that for

imperative languages. Pinpointing the reason for this discrepancy has proved

difficult, since it is likely due to multiple causes.

These performance problems provide an ample supply of further research

problems, ranging from optimising the structures used for non-strict eval-

uation (although such optimisations would likely be platform specific), to

improved handling of function calls and values. One of the more immediate

problems, tail calls, has already been commented on in Section 9.3.4. Tail

calls are frequently used by functional languages to improve performance,

and also for limiting stack overflows. However, initial tests demonstrate that

97

on the CLI tail calls reduce performance and currently the high level compiler

we use does not emit them. Although it may be possible to emit tail calls

by changing the final code generation phase a careful study of the tradeoffs

of such a step would be prudent.

10.1.2 Virtual Machine Level Support

If it is found that there is no mechanism to achieve high levels of performance

on current OOVMs it may prove necessary to modify the VM itself. While

supporting strict algebraic types is trivial on an OOVM, non-strict types

have proved to be a different story, requiring a number of steps to allow

only semi-transparent non-strictness. The addition of VM support for non-

strictness could resolve this problem through incorporating the mechanisms

we described in Chapter 6 into the VM’s type system. Such a modification

would render non-strictness completely transparent to other languages.

Higher kinded types and higher ranked types would both benefit from the

addition of VM support as well. VM support for higher kinded types would

improve our current solution by allowing code with higher kinds to be stat-

ically verified. Higher ranked types would potentially receive a significant

performance improvement through no longer requiring extensive wrapping,

they would also no longer require the generation of large numbers of interfaces

(as described in Section 8.2.1).

10.1.3 Integration of External Functions into a Functional Language

The techniques we have discussed allow code written in a functional language

to be executed on an object oriented virtual machine, and also allow it to be

called from other languages. However, we have not worked on a mechanism,

such as GHC’s foreign function interface, to provide functional language level

calling of external functions. Such an interface between languages with dis-

similar semantics is a research project in its own right.

However, given that our design follows the calling conventions of the host

OOVM, calling code written in other languages can be done; requiring only

that the signatures be described in the appropriate manner to the Haskell

98

compiler. In this situation though no guarantees are provided that the correct

semantics of the functional language code will be maintained, this must be

checked by manual means.

10.2 Conclusions

We have developed a number of techniques that provide support for non-

strict evaluation, higher kinded types, and higher ranked types on the CLI.

These techniques provide support for partial evaluation of functions, non-

strict evaluation and higher order, higher ranked and higher kinded types.

The techniques to convert and integrate the algebraic types of a functional

language (and the type class feature of the Haskell language) with that of

the CLI were discussed in Chapter 5. These techniques allow transparent

interaction with algebraic types from other languages the targeting the CLI.

This is achieved through the use of specially arranged inheritance to represent

the disjoint union structure of algebraic types.

Chapter 6 describes the mechanisms we have developed to extend this ba-

sic model to support the non-strict evaluation semantics of non-strict lan-

guages like Haskell. Unfortunately the techniques we have developed are not

completely transparent, however they are a substantial improvement over

previous techniques.

We describe the algorithm used to process higher kinded types in Chapter 7.

While the algorithm we have developed provides complete support for higher

kinded types, we have not been able to provide support for full static typing.

This results in a potential performance impact through the requirement for

runtime type checking. However, unlike other approaches static type infor-

mation is retained for all non-higher kinded types in all generated code.

Chapter 8 introduced a series of algorithms to support higher ranked types

on an OOVM. While the basic idea described was an obvious extension to

existing programming practises it has proved necessary to develop numerous

techniques to allow such higher ranked types to be used in multiple libraries.

The algorithms and techniques have been used to develop an experimental

compiler for the full Haskell 98 language specification, including the GHC

99

extension of higher ranked types (see Chapter 9). While time constraints

prevented us from being able to completely validate our support for higher

kinded types, the compiler demonstrates that our techniques can be used

to support an existing language on an OOVM with no modification to the

source language.

In conclusion the techniques we have developed allow languages using non-

strict evaluation, higher kinded types, or higher ranked types to be compiled

to OOVMs such as the CLI without modification to the original language

or the VM. Unlike other attempts to support these features our techniques

do not rely on type erasure, and use dynamic typing only in specific cases,

thus improving the ability of the generated code to safely interact with other

languages on the VM.

100

References

[1] J. Armstrong. The development of erlang. In ICFP ’97: Proceedings

of the second ACM SIGPLAN international conference on Functional

programming, pages 196–203, New York, NY, USA, 1997. ACM Press.

[2] H. J. Boehm. Space efficient conservative garbage collection. SIGPLAN

Not., 39(4):490–501, 2004.

[3] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An experi-

mental applicative language. In LFP ’80: Proceedings of the 1980 ACM

conference on LISP and functional programming, pages 136–143, New

York, NY, USA, 1980. ACM Press.

[4] M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk, D. Leijen,

S. Markow, E. Meijer, S. Panne, S. P. Jones, A. Reid, M. Wallace,

and M. Weber. The Haskell 98 Foreign Function Interface 1.0: An Ad-

dendum to the Haskell 98 Report. Technical report, 2002.

[5] W. D. Clinger. Proper tail recursion and space efficiency. In PLDI ’98:

Proceedings of the ACM SIGPLAN 1998 conference on Programming

language design and implementation, pages 174–185, New York, NY,

USA, 1998. ACM Press.

[6] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland,

1958.

[7] H. Evans and P. Dickman. Garbage collection and memory management.

pages 138–143, 1997.

[8] J. Fairbairn and S. Wray. TIM: a simple, lazy abstract machine to

execute supercombinators. In Proc. of a conference on Functional pro-

101

gramming languages and computer architecture, pages 34–45, London,

UK, 1987. Springer-Verlag.

[9] S. Finne. Hugs98 for .NET. http://galois.com/∼sof/hugs98.net/,

2002.

[10] S. Finne, D. Leijen, E. Meijer, and S. L. P. Jones. Calling hell from

heaven and heaven from hell. In International Conference on Functional

Programming, pages 114–125, 1999.

[11] M. Fowler. UML Distilled, 3rd Edition. Addison-Wesley, 2004.

[12] D. P. Friedman and D. S. Wise. CONS should not evaluate its argu-

ments. In Michaelson and Milner, editors, Automata, Languages and

Programming. Edinburgh University Press, 1976.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.

Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-

fessional Computing Series. Addison-Wesley, 1995. GAM e 95:1 1.Ex.

[14] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond

the sandbox: An overview of the new security architecture in the Java

Development Kit 1.2. In USENIX Symposium on Internet Technologies

and Systems, pages 103–112, Monterey, CA, 1997.

[15] A. D. Gordon and D. Syme. Typing a multi-language intermediate code.

ACM SIGPLAN Notices, 36(3):248–260, 2001.

[16] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF – A

mechanised logic of computation. LNCS, 78, 1979.

[17] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Spec-

ification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[18] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type

classes in haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138,

1996.

102

http://galois.com/~sof/hugs98.net/

[19] A. C. Hearn. Standard lisp (reprint). SIGSAM Bull., (13):28–49, 1969.

[20] M. C. Henson. Elements of Functional Languages. Blackwell Scientific

Publications, 1987.

[21] R. Hertzman. Lazy imperative languages - report on a project

to examine the use of lazy evaluation in imperative languages.

http://citeseer.ist.psu.edu/hertzman95lazy.html, 1995.

[22] J. Hughes. Why Functional Programming Matters. Computer Journal,

32(2):98–107, 1989.

[23] Jim Hugunin. Ironpython: A fast python implementation for .net and

mono. PyCON, 24 March 2004.

[24] D. H. H. Ingalls. The smalltalk-76 programming system design and

implementation. In POPL ’78: Proceedings of the 5th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, pages

9–16, New York, NY, USA, 1978. ACM Press.

[25] ECMA International. ECMA-367: Eiffel Analysis, Design and Program-

ming Language. 2005.

[26] ECMA International. ECMA-334: C# Language Specification. 2006.

[27] A. Kennedy and D. Syme. Design and implementation of generics for

the .net common language runtime. In PLDI ’01: Proceedings of the

ACM SIGPLAN 2001 conference on Programming language design and

implementation, pages 1–12, New York, NY, USA, 2001. ACM Press.

[28] A. Kuhnemann. Benefits of tree transducers for optimizing functional

programs, 1998.

[29] J. Launchbury. Lazy imperative programming. In Proceedings of the

ACM SIGPLAN Workshop on State in Programming Languages, Copen-

hagen, DK, SIPL ’92, pages 46–56, 1993.

103

http://citeseer.ist.psu.edu/hertzman95lazy.html

[30] S. Marlow and S. L. Peyton Jones. Making a fast curry: push/enter vs.

eval/apply for higher-order languages. In ICFP ’04: Proceedings of the

ninth ACM SIGPLAN international conference on Functional program-

ming, pages 4–15, New York, NY, USA, 2004. ACM Press.

[31] J. McCarthy. History of lisp. In HOPL-1: The first ACM SIGPLAN

conference on History of programming languages, pages 217–223, New

York, NY, USA, 1978. ACM Press.

[32] E. Meijer and K. Claessen. The Design and Implementation of Mon-

drian. In Haskell Workshop. ACM, June 1997.

[33] E. Meijer and S. Finne. Lambada: Haskell as a better java. Electronic

Notes in Theoretical Computer Science, 41, 2001.

[34] E. Meijer, N. Perry, and A. van IJzendoorn. Scripting .NET using Mon-

drian. Lecture Notes in Computer Science, 2072:150–??, 2001.

[35] The Mono Project. http://www.go-mono.org.

[36] M. Moskal, P. Olszta, and K. Skalski. Nemerle: Introduction to a Func-

tional .NET Language. http://nemerle.org/intro.pdf.

[37] M. Odersky and P. Wadler. Pizza into Java: Translating theory into

practice. In Proceedings of the 24th ACM Symposium on Principles

of Programming Languages (POPL’97), Paris, France, pages 146–159.

ACM Press, New York (NY), USA, 1997.

[38] A. T. H. Pang and M. M. T. Chakravarty. Interfacing haskell with

object-oriented languages. In P. Trinder and G. Michaelson, editors,

Implementation of Functional Languages: 15th International Workshop,

LNCS, pages 20–36. Springer-Verlag, October 2003.

[39] N. Perry. Implementing non-strict evaluation on OOVMs. IEE Proceed-

ings on Software, 152(6):309–315, 2005.

104

http://www.go-mono.org
http://nemerle.org/intro.pdf

[40] N. Perry and E. Meijer. Implementing functional languages on object-

oriented virtual machines. IEE Proceedings on Software, 151(1):1–9,

2004.

[41] N. Perry and K. M. Sephton. The Hope+C Compilation System. In Pro-

ceedings of the 1989 Bejing International Symposium for Young Com-

puter Professionals, Bejing, 1989.

[42] S. L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice Hall, 1987.

[43] S. L. Peyton Jones. Tackling the awkward squad: monadic input/out-

put, concurrency, exceptions, and foreign-language calls in haskell. Engi-

neering theories of software construction, Marktoberdorf Summer School

2000, pages 47–96, 2000.

[44] S. L. Peyton Jones, editor. Haskell 98 Language and Libraries: the

Revised Report, volume 13. Cambridge University Press, 2003.

[45] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. Partain, and

P. Wadler. The glasgow haskell compiler: a technical overview. In

Proc. UK Joint Framework for Information Technology (JFIT) Techni-

cal Conference, 1993.

[46] S. L. Peyton Jones and D. R. Lester. Implementing Functional Lan-

guages: a tutorial. 22 January 1992.

[47] S. L. Peyton Jones, E. Meijer, and D. Leijen. Scripting COM compo-

nents in haskell. In Fifth International Conference on Software Reuse,

Victoria, British Columbia, 1998.

[48] S. L. Peyton Jones and M. Shields. Practical type inference for arbitrary-

rank types, March 2004. Under consideration for publication in J. Func-

tional Programming.

105

[49] S. L. Peyton Jones and P. Wadler. Imperative functional programming.

In Conference record of the Twentieth Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Charleston, South

Carolina, pages 71–84, 1993.

[50] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[51] The Python Programming Language. http://www.python.org.

[52] E. Rose. Towards secure bytecode verification on a Java Card. Master’s

thesis, 1998.

[53] The Ruby Programming Language. http://www.ruby-lang.org.

[54] T. Shackell. Yhc: The York Haskell Compiler.

http://www-users.cs.york.ac.uk/ndm/yhc/, 9 February 2006.

[55] C. Shan. Sexy types in action. SIGPLAN Not., 39(5):15–22, 2004.

[56] B. Stroustrup. The C++ Programming Language. Addison-Wesley,

1997.

[57] D. Stutz, T. Neward, and G. Shilling. Shared Source CLI Essentials.

O’Reilly & Associates, Inc, 2003.

[58] V. S. Sunderam. PVM: a framework for parallel distributed computing.

Concurrency, Practice and Experience, 2(4):315–340, 1990.

[59] D. Syme. The F# Programming Language.

http://research.microsoft.com/projects/ilx/fsharp.aspx.

[60] D. Syme. Proving java type soundness. In Formal Syntax and Semantics

of Java, pages 83–118, 1999.

[61] D. Syme. ILX: Extending the .NET common IL for functional lan-

guage interoperability. Electronic Notes in Theoretical Computer Sci-

ence, 59(1), 2001.

106

http://www.python.org
http://www.ruby-lang.org
http://www-users.cs.york.ac.uk/ ndm/yhc/
http://research.microsoft.com/projects/ilx/fsharp.aspx

[62] A. Tolmach. An external representation for the GHC core language.

http://www.haskell.org/ghc/docs/papers/core.ps.gz.

[63] D. A. Turner. Recursion equations as a programming language. In John

Darlington, Peter Henderson, and David Turner, editors, Functional

Programming and its Applications, pages 1–28. Cambridge University

Press, January 1981.

[64] D. A. Turner. Miranda: a non-strict functional language with poly-

morphic types. In Proc. of a conference on Functional programming

languages and computer architecture, pages 1–16, New York, NY, USA,

1985. Springer-Verlag New York, Inc.

[65] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc.

In Conference Record of the 16th Annual ACM Symposium on Principles

of Programming Languages, pages 60–76. ACM, 1989.

[66] S. C. Wray and J. Fairbairn. Non-strict languages — programming and

implementation. The Computer Journal, 32(2):142–151, 1989.

107

http://www.haskell.org/ghc/docs/papers/core.ps.gz

	List of Figures
	Introduction
	Topic
	Problems
	Non-Strict Evaluation
	Higher Kinded Types
	Higher Ranked Types

	Evaluation
	Overview

	Background and Related Work
	Functional Programming Languages
	Virtual Machines
	Targeting an OOVM
	Existing Functional Language to Typed Virtual Machine Compilers
	Interfacing Haskell to an Object Oriented Virtual Machine

	Functions and Non-Strictness
	Lambda Expressions
	Partial Application
	Using The Push-Enter Model
	Using The Eval-Apply Model
	Transforming Partial Applications Into Complete Applications
	Discussion

	Non-Strictness

	Types
	Functional Language Types
	Algebraic types and Records
	Parametric Polymorphism
	Type Classes and Instances
	Higher Ordered, Ranked, and Kinded Types

	Imperative Object-Oriented Types
	Classes
	Generic Classes and Methods
	Primitive and Value Types

	Converting Functional Types to an Imperative Object Model
	Algebraic Types
	Type Classes and Instances
	Higher Order Types

	Providing Non-Strictness
	Support for Non-Strictness on Conventional Architectures
	Non-Strictness on OOVMs: Current Developments
	JIT Objects

	Algebraic types vs. JIT Objects
	Non-Strictness for Functional Languages
	Non Strictness for Boxed Primitives
	Non-Strict Function Values

	Performing Non-Strict Evaluation

	Higher Kinded Types
	Background
	Higher-kinded type variables in functions
	Higher-kinded type variables in type classes

	Solution
	 Type Erasure
	Explicit Instantiation Types

	Problems

	Higher Ranked Types
	What are higher ranked types?
	Solution
	Basic solution
	Supporting Multiple Libraries

	Problems

	Experimental Compiler
	Design Decisions
	Type Generation
	Architecture
	Stage 1: Initial Processing
	Stage 2: Converting to a Typed Structure
	Stage 3: Transformations
	Stage 4: Final Compilation

	Performance
	Summary

	Future Work and Conclusion
	Future Work
	Performance Improvements
	Virtual Machine Level Support
	Integration of External Functions into a Functional Language

	Conclusions

	References

